• Title/Summary/Keyword: vibration effect

Search Result 3,876, Processing Time 0.033 seconds

Experimental Evaluation on the Vibration Control Effect of Tuned Liquid Damper with Embossment (벽면 요철형 동조액체댐퍼의 진동제어성능에 관한 실험적 평가)

  • Ju, Young Kyu;Kim, Dae Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.765-772
    • /
    • 2002
  • Many researchers have studied several vibration control devices such as TMD, TLD, and VED to reduce the acceleration level for tall buildings. Advantages of TLD (tuned liquid damper) include easy installation, low cost, and less maintenance. However, the dynamic characteristics of TLD must be verified by experiment and analysis due to the difficulties in evaluating the characteristics of water sloshing. In this study, free vibration and dynamic excitation experiments of structure with TLD were conducted to verify vibration control force of the proposed TLD for high-rise building. The parameters were mass ratio of water to structure, number of damping nets, and aspect ratio. From the test results, the responses of structure with water tank were observed to be smaller than those of structure alone. Furthermore, better damping effect could be achieved with larger mass ratio, more damping nets, and larger aspect ratio. However, in the case of water tank with no damping net, little damping effect was obtained.

Study on the Thermal and Dynamic Behaviors of Air Spring for vibration isolation of LCD panel inspecting machine connected with an External Chamber through a flexible tube: PART I, Theoretical Modeling (외부챔버와 유연한 튜브로 연결된 LCD 패널 검사기 방진용 공기 스프링의 열 및 동적 연성거동에 대한 연구: PART I, 이론적 모델링)

  • Seok, Jong-Won;Lee, Ju-Hong;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • Due to the recent quantum leaps forward in bio-, nano-, and information-technologies (BT, NT and IT), the precisionization and miniaturization of mechanical and electrical components are in high demand. In particular, the ITrelated equipments that take a great part in our domestic industry are in the area requiring high precision technologies. As a consequence, the researches on the development vibration isolation systems that diminish external disturbance or internal vibration are highly required. Among the components comprising the vibration isolation system, air spring has become on a focal point for the researchers due to its merits. This air spring is able to support heavy loads, keep a low natural frequency despite of having a lower value of stiffness, and control the performance of vibration isolation. However, sometimes the sole use of air spring is in demand due to some economic reasons. Under this circumstance, the damping effect of sole air spring may not enough to reduce sufficient amount of vibration. In this study, the air spring mount system connecting with an external chamber is proposed to increase or control the damping effect. To investigate its damping mechanism, the thermal and dynamic behaviors of the system is examined through a theoretical modeling approach in this part of research. In this approach, thermomechanical and Helmholtz resonator type models are to be employed for the air spring/external chambers and connecting tube system, respectively. The frequency response functions (FRFs) derived from the modeling effort are evaluated with physical parametric values and the effects of connecting tube length on these FRFs are identified through computer simulations.

An Analysis of Power System Stability(PSS) Effect with 135MVA Hydro Generator (135MVA 수력 발전기의 전력 시스템 안정화 장치 적용 효과 분석)

  • Ok, Yeon-Ho;Lee, Eun-Woong;Byun, Ill-Hwan;Oh, Sueg-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1100-1104
    • /
    • 2009
  • As national power consumption every year increases, the power plant which is in the process of planning tries to establish high-capacity generator. The power system tends to become a large size. With the progress of electronic components, the control systems of the generator have been digitalized and rapid-response control system is possible. However, the minute frequency vibration of grid occurred with the effect of rapid-response control system. To solve these problem, PPS(Power System Stability) has been introduced since 2004, and it has being installed and applied to the thermal and nuclear power plant which are high-capacity, over 800MVA. However the minute frequency vibration is gradually changed to the bigger frequency vibration by fast-action control system, and this regional frequency fluctuation might be diffused wide area. Therefore, it is applied to the hydro generator which is small with fast-action governor system, and it is necessary to control the minute frequency vibration to prevent to diffuse. In this paper, the effect will be proved by establishing PSS on the Hydro-Generator which has both digital excitation and governor system for the first time in Korea.

Analysis of Ground Improvement Effect of Low Vibration Sand Compaction Pile Method (저진동 모래다짐말뚝(LVSCP)의 지반개량효과 분석)

  • Kim, Jong-Kook;Cha, Jun-Tae;Lee, Jae-Chang;Chae, Young-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1234-1242
    • /
    • 2010
  • In this study, the effect of noise and vibration, and influence of ground improvement are evaluated and its application is analyzed through the example of SCP designed at ground improvement in Song-Do international city. consequently, it showes even comfortable result that it is about 5.0m of inner space, when the LVSCP method is applied, rather than that it is about 30m of inner space when the existing SCP is applied in vibration control standards 2.0mm/sec. In the noise, now that the many differences according to environmental factors like other equipment noise, limited space and so on at the time of the construction by LVSCP method are coming out, so we think that appro itate measures are needed according to surroundings. By the way, when it comes to the estimation of the ground improvement work before and after an improvement of LVSCP method, its result shows that it is satisfacttion to all the standards of compaction control in dregded and reclaimed ground and sedimentary clay layer.

  • PDF

Development of Vibroacoustic Stimulation Seat for a Movie Theater Chair (영화관 의자용 음향진동자극 시트의 개발)

  • Moon, Deok-Hong
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.42-49
    • /
    • 2013
  • The global movie industry is continuing rapid growth through application of the latest technology. 3D movies are being produced and shown for a more effective viewing experience. Special chairs for audiences are being experimentally manufactured and installed for the greatest viewing effect. This special chair has a structure that applies vibrating stimuli to specific parts of the body by attaching vibration transducers to theater chairs and synchronizing it with each scene of the movie. In a previous study, it has been confirmed that we can analyze the vibration transfer characteristics of sponge seats through the application of an experimental modal analysis method and obtain design variables easily. In this paper, we examine the major design parameters needed in the development of a foaming sponge seat in which auxiliary springs are inserted to improve the vibration transfer effect of a chair seat. Through analyzing several prototypes by applying experimentation as well as the experimental modal analysis method, it was confirmed that the effect of vibration transfer can be improved through the use of an auxiliary member.

The Study on the Unidrectionally Solidified $AI-CuAl_2$ Eutectic Composites(1) (Effect of Solidification Condition and Vibration on the Microstructure) (일방향 응고한 $AI-CuAl_2$공정복합재료에 관한 연구(1)(미세조직에 미치는 응고조건과 진동의 영향))

  • Lee, Hyeon-Gyu;Hong, Jong-Hwi
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.177-186
    • /
    • 1994
  • The effect of solidification condition and vibration on structure refinement was investigatedfor unidirectionally solidified $AI-CuAI_{2}$ eutectic composites. Eutectic composites were unidirectionally solidifiedunder vibration with variation of growth rates (R) and thermal gradient((G), $32^{\circ}C$/cm, and 35$^{\circ}C$/cm. The lamellar structure was varied according to growth condition(G/R ratio). For the structure refinementthe effect of G/R was found out to be greater rather than that of vibration. The interlamellarspacing(l) in this materials was varied with the growth rates(R) by "$\lambda^{2}R$=Constant" relationshipquot; relationship

  • PDF

Dynamic Characteristic of Coastal Reclaimed Land through Shaking Table Test (실내 진동대 실험을 통한 해안매립지반의 동적 특성 평가)

  • Shin, Eun-Chul;Kang, Hyoun-Hoi;Park, Jeong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.640-648
    • /
    • 2009
  • Recently the truction of coastal reclaimation work has been extensively implemented in Korea. The Sondo New City is being established on the reclaimed land from the sea, construction companies of metro construction are planing to pull-out the sheet pile for saving the construction cost. In the case of soft marine clay, it is very difficult to pull-out the sheet pile by using the hydraulic hammer difficult. Therefore, the man of the field must be aware of vibration effect to the ground and the structure. For understanding the vibration effect to the ground during subway construction, the model was formulated with 1/25 braced-cut for subway construction. Scott and Iai(1989) proposed the law of the similarity for other experimental conditions. The laboratory model test was conducted under the vibration condition of sheet pile pulling out. The settlement on the ground surface was measured during the shaking table test. The pore water pressure was also monitored in the upper, middle, and lower layers of soil. The field settlement level and the pore water pressure can be predicted by using the results of the laboratory shaking table test.

  • PDF

Nonlocal vibration analysis of FG nano beams with different boundary conditions

  • Ehyaei, Javad;Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.85-111
    • /
    • 2016
  • In this paper, the classical and non-classical boundary conditions effect on free vibration characteristics of functionally graded (FG) size-dependent nanobeams are investigated by presenting a semi analytical differential transform method (DTM) for the first time. Three kinds of mathematical models, namely; power law (P-FGM), sigmoid (S-FGM) and Mori-Tanaka (MT-FGM) distribution are considered to describe the material properties in the thickness direction. The nonlocal Eringen theory takes into account the effect of small size, which enables the present model to become effective in the analysis and design of nanosensors and nanoactuators. Governing equations are derived through Hamilton's principle and they are solved applying semi analytical differential transform method. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as small scale effects, spring constant factors, various material compositions and mode number on the normalized natural frequencies of the FG nanobeams in detail. It is explicitly shown that the vibration of FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Liquid boundary effect on free vibration of an annular plate coupled with a liquid

  • Kyeong-Hoon Jeong
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.127-149
    • /
    • 2023
  • A theoretical method is developed to analyze the free vibration of an elastic annular plate in contact with an ideal liquid. The displacement potential functions of the contained liquid are expressed as a combination of the Bessel functions that satisfy the Laplace equation and the liquid boundary conditions. The compatibility condition along the interface between the annular plate and the contained liquid is taken into account to consider the fluid-structure coupling. The dynamic displacement of the wet annular plate is assumed to be a combination of dry eigenfunctions, allowing for prediction of the natural frequencies using the Rayleigh-Ritz method. The study investigates the effect of radial liquid boundary conditions on the natural frequencies of the wet annular plate, considering four types of liquid bounding: outer container bounded, outer and inner bounded, inner bounded, and radially unbounded. The proposed theoretical method is validated by comparing the predicted wet natural frequencies with those obtained from finite element analysis, showing excellent accuracy. The results indicate that the radial liquid bounding effect on the natural frequencies is negligible for the axisymmetric vibrational mode, but relatively significant for the mode with one nodal diameter (n =1) and no nodal circle (m' = 0). Furthermore, the study reveals that the wet natural frequencies are the largest for the plate with an inner bounded cylinder among the radial liquid boundary cases, regardless of the vibration mode.

The Effect of Chest Physiotherapy on the Amount of Tracheal Secretion and $PaO_2$ (흉부물리요법이 기관 분비물량과 동맥혈 산소분압에 미치는 영향)

  • Jun Seong-Sook;Moon Mi-Jin
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.7 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • The purpose of this research was to find out the effect of chest physiotherapy on the amount of tracheal secretion and $PaO_2$. After changing position of the neurosurgical patients who had tracheostomy cannula, experimental treatments were applied as bellows, manual chest percussion on groupI, chest percussion and manual chest vibration on groupII, chest percussion and mechanical chest vibration on groupIII were done. After these trials, we have analyzed the efficacy of each procedures comparing the group differences in the quantity of tracheal secretion and $PaO_2$. Target samples were sixty patients aged between 20 to 60 who have tracheostomy state and decreased consciousness status that were admitted in NICU of a university hospital from June 1 to August 31, 1999. They assigned randomly into three experimental groups. To compare the effect of each interventions, tracheal secretion quantify was measured and $PaO_2$ was analyzed via arterial blood gas analyzer. The data were analyzed by ANCOVA of 5% significance level using SPSS P/C program. The results were as bellows. 1) The first hypothesis 'There is a difference In the quantify of the secretion among GroupI, GroupII and GroupIII' was accepted.(F=29.27, p=0.00) 2) The second hypothesis 'There is a difference in $PaO_2$ among GroupI, GroupII and GroupIII' was rejected.(F=1.71, p=0.19) From this study results, positional change and manual chest vibration including chest percussion were the most effective treatment to get maximum amount of tracheal secretion and it was confirmed that mechanical chest vibration also made much better effect than sole chest percussion method. Therefore, we concluded that the mechanical or manual chest vibration with chest percussion is more effective respiratory care method than the sole chest percussion.

  • PDF