• Title/Summary/Keyword: vibration displacement measurement

Search Result 170, Processing Time 0.026 seconds

Correction of Error due to Camera Shaking when Vibration Measurement by Using Camera Image (카메라 영상을 이용한 진동 변위 측정 시 카메라 흔들림 보정 방법)

  • Jeon, Hyeong-Seop;Son, Ki-Sung;Han, Soon Woo;Park, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.817-824
    • /
    • 2014
  • Accelerometer and laser vibrometers are widely used to measure vibration of structures like a building or piping. Recently, the research measuring vibration by using camera image is introduced. However, this method has a disadvantage. If camera moves by the vibration cannot measure the vibration displacement of structure. We proposed the enhanced technique for measuring vibration using camera. This paper took the experiment for correction of error due to camera shaking. We verified through an experiment. And the accuracy of the method measuring the vibration displacement by using the camera images was analyzed.

A Technique for Vibration Measurement and Roundness Assessment of Rotating-axis using Camera Image (카메라 영상을 이용한 회전축 진동 측정 및 진원도 평가 방법)

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Park, Jin-Ho;Park, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.131-138
    • /
    • 2014
  • Vibration measurement of rotating shafts by installing sensors such as accelerometers or displacement sensors is costly and dangerous in some cases. As an alternative method, vibration measurement using camera images has been researched because sensor installation is not needed and displacement of a rotating shaft can be directly evaluated. This paper also suggests the enhanced technique applicable to the measurement of vibration of a large-scale rotating shaft. The concurrent methods based on camera images use marks, which are hardly applicable to rotating shafts. The proposed method measures vibration without any marks by evaluating shape errors. The working principle of the method is described and verified by a series of experiments.

A Study on the Ultrasonic Technique for Measurement of Vibration in Journal Bearing (저어널 베어링의 진동 계측을 위한 초음파 응용 기술에 관한 연구)

  • 김노유
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.476-481
    • /
    • 1999
  • This paper describes a new technique for measurement of the displacement less than one-quarter of the wavelength of ultrasonic wave using ultrasonic pulse-echo method. The technique determines the displacement of a journal bearing from the amplitudes of the total reflected waves from the surface of journal inside the bearing. Vibration of journal bearing can be measured without using a very high frequency ultrasonic transduce over 100MHz which must be used in the conventional techniques for the precision measurement of a small displacement. The method also requires no inversion process to extract the thickness from the waveforms of the reflected waves, so that it makes possible on-line measurement of the vibration of journal bearing.

  • PDF

Measurement of Low-Frequency Vibrations of Structures Using the Image Processing Method (영상 처리 방법을 이용한 구조물의 저주파수 진동 계측)

  • Kim, Ki-Young;Kwak, Moon- K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.503-507
    • /
    • 2004
  • This paper is concerned with the measurement of low-frequency vibrations of structures using the image processing method. To measure the vibrations visually, the measurement system consists of a camera, an image grabber board, and a computer. The specific target installed on the structure is used to calculate the vibration of structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the size of image. In this paper, we discuss the methodology for the vibration measurement using the image processing method. The method enables us to measure the displacement directly without any contact. The resolution of the vibration measurement can be refined but limited to the sub centimeter displacement.

  • PDF

Vibration Measurement of a Structure Using Non-metric Cameras (비측정용 카메라를 이용한 구조물 진동 측정)

  • Rhee, Hui-Nam;Lee, Hyo-Seong;Lee, Sang-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.107-108
    • /
    • 2011
  • A methodology to measure 3-dimensional vibrational displacement of a structure by digital photogrammetry is proposed in this paper. Stereo digital images of a vibrating structure were obtained by two non-metric cameras. Then by applying the collinearity condition to the images, the 3-d displacement time history data of a point or many points can be calculated by the present methodology. Experimental work was performed to measure the displacement time history for a cantilever beam excited by a piezoelectric patch, in which the in-depth displacement data obtained by the proposed method well matched the laser sensor data.

  • PDF

Displacement Measurement of Multi-Point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.675-680
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When displacement is measure by using camera images, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.

  • PDF

Enhancement of Displacement Resolution of Vibration Data Measured by using Camera Images (카메라 영상을 이용한 진동변위 측정 시 측정해상도 향상 기법)

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Han, Soon Woo;Park, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.716-723
    • /
    • 2014
  • Vibration measurement using image processing is a fully non-contact measurement method and has many application fields. The resolution of vibration data measured by image processing depends on the camera performance and is lower than that measured by accelerometers. This work discusses the method to increase resolution of vibration signal measured by image processing based on the image mosaic technique with a high-power lens. The working principle of resolution enhancement was explained theoretically and verified by several experiments. It was shown that the proposed method can measure vibrations of relatively large scale structures with increased resolutions.

Application of Differential GPS for the Displacement Measurement of Self-anchored Suspension Bridge under the Static and Dynamic Loading Cases (DGPS 기법을 이용한 자정식 현수교의 정동적 변위응답 측정 및 분석)

  • Kim, Hyung-Tae;Seo, Ju-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1126-1132
    • /
    • 2009
  • Bridge structures are designed to support ordinary loadings such as vehicles, wind, temperature and current as well as unexpected loadings like earthquakes and storm. Especially, the displacement of Flexible bridges like an suspension bridge under ordinary loading conditions is necessary to be monitored. In case of long span bridges, there are some difficulties in monitoring the displacement of center of the main span using traditional laser displacement sensors. In this study, the static and dynamic displacement responses due to vehicle loadings were measured by DGPS(differential global positioning system) technique. The displacement response data were compared with data obtained from traditional laser displacement sensors so that the static and dynamic behavior of the bridge under vehicle loadings was examined and the applicability of the displacement response measurement using DGPS technique was verified. The static and dynamic loading test for an self-anchored suspension bridge, So-rok Bridge, was performed using vehicles. The displacement response from DGPS technique and that from laser displacement sensors of the bridge monitoring system were compared. The amplitude of white noise from DGPS based measurement was about 7 mm and that of laser displacement sensor based measurement was about 3 mm. On the other hand, dynamic behavior of the center of main span from DGPS based measurement showed better agreement with influence line of the bridge than that from laser displacement sensors. In addition, there were some irregular and discontinuous variation of data due to the instability of GPS receivers or frequent appearance of GPS satellites. Post-processing via the reference station close to an observation post provided by NGII(National Geographic Information Institute) will be a counter-plan for these defects.

Displacement Measurement of Multi-point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1256-1261
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When multi-point is measure by using a pattern recognition, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.

The Study of Precision measurement by the 3-Point Method (3점식 정도측정에 관한 연구)

  • 전승윤;이영진;정영일;배종일;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.607-612
    • /
    • 2000
  • Roundness measurement method using three displacement sensors makes in-process roundness measurement possible on the NC machine because it eliminates the vibration signal and eccentricity signal from measured roundness signal from the workpiece. But if measured signals contain noises, high precision measurement of the roundness isn't possible. In this study, a high precision in-process roundness measurement system is developed, which applies a Kalman filter to the roundness measurement method using three displacement sensors and can be used to measure vibration of the spindle.

  • PDF