• Title/Summary/Keyword: vibration

Search Result 25,159, Processing Time 0.045 seconds

The Study on Vibration Isolation of Industrial Turbo-fan (산업용 터보팬의 진동절연에 관한 연구)

  • Park, Ik-Pil;Kim, Dong-Young;Kwon, Yong-Soo;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.609-615
    • /
    • 2001
  • A turbo-fan is easily exposed to noise and vibration as against other industrial machines and the majority of them is subject to be damaged by vibration. The most usual problem of vibration in a turbo-fan is resonance so the case of being composed of iron sheet structure with low strength like a turbo-fan should be taken seriously. In this paper, FFT(Fast Fourier Transform) and Order tracking method were used to analyze factors of vibration in a turbo-fan and hereby with proper selection of vibration isolator, we wanted to reduce vibration of base. After Order tracking, we knew resonance occurred in rotational frequency 23 Hz(1400 rpm) at the casing and the bearing. After the test of base vibration using vibration isolators, the spring isolator was more effective than the robber isolator in the base vibration and the vibration isolating is more effective in the case that the isolating pad is adhered to the bottom of the isolating spring.

  • PDF

Regional Control of Vibration (진동의 영역 제어)

  • Kim, Yang-Hann;Chang, Ji-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.472-475
    • /
    • 2008
  • Generally, a linear vibration theory regards a vibratory system as the superposition of many degrees of vibratory system. Modal analysis stems, in fact, considers the vibration system as what has input, output, and transfer function that relates the input and output. When we want to control, however, the vibratory system, we define, first, the object function that can be vibration energy of certain vibratory system. Then, we try to find the transfer function that can minimize the object function. We can readily extend this approach to control the distributed vibration system. For example, the vibrations of a vehicle, including ships and trains. In this case, we may want to minimize the vibration of the area we select. For example, minimize the vibration of the passengers' seat, but allowing the vibration of other area; for example engines and wheels. This paper introduces a general theory that can control the vibration of the selected area, which can be called as "regional control of vibration." In fact, this is the extended theory of well known sound control of "bright zone"(Choi and Kim, 2002).]. Several illustrative examples demonstrate the applicability and properties that are not available if we use modal analysis method.

  • PDF

A Study on the Vibration Behavior of Composite Laminate under Tensile Loading by ESPI (ESPI에 의한 인장하중 하에서의 복합재 적층판의 진동 거동에 관한 연구)

  • Yang, Seung-Pil;Kim, Koung-Suk;Jung, Hyun-Chul;Chang, Ho-Seob;Kim, Chong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.516-521
    • /
    • 2000
  • Most of studies, using ESPI method, have handled tension, thermal and vibration analysis, and is limited to isotropic materials. However, tension and vibration simultaneously are loaded in real structure. Also, almost study using ESPI method is locally limited to the analysis on the isotropic materials and a few studies on the anisotropic materials have reported. Existing methods, such as the accelerometer method and FEA method, to analyze vibration have some disadvantages. Using the accelerometer method that is generally used to analyze vibration phenomena, it is impossible to analyze vibration on the oscillating body and one can observe no vibration mode shape during experiment. In case of the FEA method, it is difficult to define boundary conditions correctly if the shape of a body tested is complex, and one can just obtain vibration mode shapes on the peak amplitude in each modes. In this study, plane plate of stainless steel(STS304), isotropic material, that is used as structural steel is analyzed about vibration characteristics under tension. Also, in the study of stainless steel, the characteristics of composite material(AS4/PEEK) used as high strength structural material in aircraft is evaluated about vibration under tension, and studies the effect of tension on vibration.

  • PDF

High Vibration Phenomena due to Cylinder Explosion Pressure of Low-speed Diesel Engine with 7 Cylinders installed on Land (육상에 설치된 저속 7실린더 디젤엔진의 폭발 기진력 및 고진동 현상)

  • Kim, Yeon-Wahn;Bae, Yong-Chae;Bae, Chun-Hee;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.826-834
    • /
    • 2007
  • A 7K60MC-S low speed diesel engine in a power plant has frequently experienced high vibration since the unit completed construction works. Up to date, no fundamental vibration solutions were reached. Hence, several vibration tests and analyses were conducted to identify the root cause of this high vibration and to suggest the optimal countermeasures for diesel engine. The 9.25 Hz and 25.4 Hz vibrations have been observed on main body during operation. The magnitude of engine upper structural vibration is generally similar in horizontal transverse direction. However, differences in the 'Fore' and 'After' vibration magnitude with the same vibration phase angle at 9.25 Hz occur due to the explosion pulsations of 7 cylinders and the Inertia momentum added by the SCR (selective catalytic reduction) duct system. It was analyzed that the excess structural vibration occurred when the natural frequency of engine body is affected by the exciting sources due to the explosion pressure and the discharge pulsation of the seven cylinders in resonance range.

Main Engine Upper Structural Vibration Phenomenon due to 2nd Node Torsional Vibration and Countermeasures on the Marine Propulsion System (선박 추진축계의 2절 비틀림 진동에 기인한 주 기관 상부 구조 진동현상과 방진 대책)

  • Lee, Donchool;Kim, Junseong;Kim, Jinhee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.549-554
    • /
    • 2013
  • For the past years, higher power rating 2 stroke super long stroke diesel engines having more than 8 cylinders and larger cylinder bore are installed mainly on very large containerships to save on fuel consumption. However, these engines are prone to X-mode vibration due to $2^{nd}$ node torsional vibration or the X-type moment, particularly because of the increase in total length and height. Recently, cases of excessive X-mode vibration often occurred on engine's major components. This vibration is manifested also as secondary vibration causing failure in engine-mount large structures. This study investigated the excitations caused by the $2^{nd}$ node propulsion shafting torsional vibration that influence X-mode vibration of the main engine and practical countermeasures are proposed. An 8RT-82RT-flex 8 cylinder engine and 11S90S-ME 11 cylinder engine for a container ship was used as research model.

  • PDF

A Study on the Prediction & Transformation of Blasting Vibration for Environmental Regulation Standard (발파진동의 예측기법과 환경규제 기준으로의 변환 연구)

  • 김남수;양형식
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.14-19
    • /
    • 2001
  • The estimation of proper prediction method and the transformation method of environmental regulation standard were carried out by measuring blasting vibration. Vibration velocity was more adequate than vibration level in the blasting design by scaled distance. Thus, design and construction mutt be controlled by vibration velocity, and it is required that the vibration velocity is transformed to vibration level to meet regulation standard. Three transformation methods were studied. First, transformation formula is derived from the shock vibration data only. The second method it the transformation by correlation equation of vibration velocity and vibration level measured at the same time. The last one is the transformation of vibration velocity by FFT. It seems to be difficult to estimate damages by these methods because that every method shows considerable error. But transformation formula of PPV component to vibration level was most practical.

  • PDF

A Study on the Control of the Floor Vibration in a Research Building (연구소(硏究所) 건물(建物)의 슬래브 진동(振動) 성능개선(性能改善) 연구(硏究))

  • Baik, In-Whee;Kang, Ho-Sub;Sohn, Young-Kyoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.75-82
    • /
    • 2007
  • A vibration in the building occurs by influences of the facility equipment and the structural system. As the building recently becomes higher and bigger, the vibration in the floor slab is issued. Specially, the vibration with $4{\sim}8Hz$ frequency is harder to control than any other range of frequency. This vibration easily affects human sensibility and often makes the resonance phenomenon by corresponding with the floor slab's natural frequency when people and heavy equipments move. Moreover, the permission regulations for the vibration of the building are established by building's purposes. However, it is not subdivided in detail and sometimes ambiguous to each client. Even though the vibration could cause negative influences in a research building, there is not the vibration criterion for a research building. Therefore, it is necessary to set up its own vibration criterion with the client before building and to keep checking this vibration criterion under the construction. This study proposes the reasonable control methods and the vibration criterion for floor slab's vibration which are adapted to the R4-project. The R4-project is a research building and a high-rise building also. Accordingly, this study could help to the next similar project in the design and the construction phase.

Evaluating Methods of Vibration Exposure and Ride Comfort in Car

  • Park, Se Jin;Subramaniyam, Murali
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.381-387
    • /
    • 2013
  • Objective: This paper studies the method of measuring whole-body vibration in the car and terms associated. Background: Human exposure to vibration can be broadly classified as localized and whole-body vibration. The whole-body vibration affects the entire body of the exposed person. It is mainly transmitted through the seat surfaces, backrests, and through the floor to an individual sitting in the vehicle. It can affect the comfort, performance, and health of individuals. Method: Human responses to whole-body vibration can be evaluated by two main standards such as ISO 2631 and BS 6841. The vibration is measured at 8 axes - three translations at feet, 3 translations of hip and two translations of back proposed by Griffin. B&K's sensors used in this study are the 3-axes translational acceleration sensor to measure the translational accelerations at the hip, back and foot. Results: The parameters associated with the whole-body vibration in the car are frequency weightings, frequency weighted root-mean-square, vibration dose values, maximum transient vibration value, seat effective amplitude transmissibility, ride values and ride comfort. Conclusion: Studied the evaluating methods of vibration exposure and ride comfort. Application: Evaluation of whole-body vibration in the car.

Development of educational vibration equipment with multiple function (교육용 복합 진동실험장치 개발)

  • Rim, Kyung-Hwa;Park, Geun-Yun;Ryu, Ho-Min;Choi, Woo-Cheol;Moon, Seong-Jun;Shin, Hye-Jung
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.2
    • /
    • pp.74-82
    • /
    • 2010
  • As the basic knowledge during designing most moving mechanical structures, vibration engineering is a subject teaching the theory on vibration control and isolation, which also cultivating the ability of analyze variety of vibration problems. However, vibration engineering is more difficult to understand than other dynamics courses in mechanical field, so the development of educational equipments in order to help understanding physical theory of vibration is really necessary. So in this paper we could see the effect after doing simple experiment process using the educational vibration equipment with multiple function, students could easily understand physical theory of vibration. The educational vibration equipment with multiple function and its application range are introduced, which could performance four kinds of typical vibration phenomenon: vibration of multidegree of freedom system, vibration of beam, vibration of beam, and vibration of plate. Finally, assessments of response and improvement plan are proposed through a survey.

  • PDF

Performance study on the whole vibration process of a museum induced by metro

  • Yang, Weiguo;Wang, Meng;Shi, Jianquan;Ge, Jiaqi;Zhang, Nan;Ma, Botao
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.413-434
    • /
    • 2015
  • The vibrations caused by metro operation propagate through surrounding soil, further induce secondary vibrations of the nearby underground structures and adjacent buildings. In order to investigate the effects of vibrations caused by metro on use performance of buildings, vibration experiment of Chengdu museum was carried out firstly. Then, the coupling tunnel-soil-structure finite element model was established with software ANSYS detailedly, providing a useful tool for investigating the vibration performances of structures. Furthermore, the dynamic responses and vibration predictions of museum building were obtained respectively by the whole process time-domain analysis and frequency-domain analysis, which were compared with the vibration reference values of museum. Quantitative analyses of the museum building performance were carried out, and the possible tendency and changing laws of vibration level with floors were proposed. Finally, the related vibration isolation measures were compared and discussed. The tests and analysis results show that: The vertical vibration responses almost increased with the increasing of building floors, while weak floors existed for the curve of horizontal vibration; The vertical vibrations were larger than the horizontal vibrations, indicating the vibration performances of building caused by metro were characterized with vertical vibrations; The frequencies of the museum corresponding to the peak vibration levels were around 6~17Hz; The damping effect of structure with 33m-span cantilever on vertical vibration was obvious, however, the damping effect of structure with foundation vibration isolators was not obvious.