• 제목/요약/키워드: vibrating

검색결과 933건 처리시간 0.029초

경계요소법과 레이저 진동센서를 이용한 구조방사소음 예측시스템 구축 (A structure-borne noise prediction based on the Boundary Element Method with a Laser Doppler Vibrometer)

  • 김정선;김대성;경용수;왕세명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1366-1370
    • /
    • 2007
  • Predicting the noise radiated from vibrating structures is important in the automotive, aerospace, construction equipment, and defense industries. In this paper, a numerical implementation of the boundary element method in solving the Helmholtz integral equation for radiated noise prediction is presented. To predict the noise emitted by vibrating structure, the developed code can use the results from a structure analysis performed by a multi-purpose structural finite element code like ANSYS and directly measured data by non-contact vibration sensor like Laser Doppler Vibrometer. To verify the accuracy of developed code, two kinds of verification are perfomed. Firstly, the computer code used the harmonic analysis results of ANSYS in simple model and try to match with SYSNOISE. After matching with simulation results, the code compared with the result from SYSNOISE which used the velocity data from the LDV measurement with different number of points. The performance of the developed code for vibro-acoustic noise prediction is presented using the experimental results of the non-contact sensor

  • PDF

Fast Evaluation of Sound Radiation by Vibrating Structures with ACIRAN/AR

  • Migeot, Jean-Louis;Lielens, Gregory;Coyette, Jean-Pierre
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.561-562
    • /
    • 2008
  • The numerical analysis of sound radiation by vibrating structure is a well known and mature technology used in many industries. Accurate methods based on the boundary or finite element method have been successfully developed over the last two decades and are now available in standard CAE tools. These methods are however known to require significant computational resources which, furthermore, very quickly increase with the frequency of interest. The low speed of most current methods is a main obstacle for a systematic use of acoustic CAE in industrial design processes. In this paper we are going to present a set of innovative techniques that significantly speed-up the calculation of acoustic radiation indicators (acoustic pressure, velocity, intensity and power; contribution vectors). The modeling is based on the well known combination of finite elements and infinite elements but also combines the following ingredients to obtain a very high performance: o a multi-frontal massively parallel sparse direct solver; o a multi-frequency solver based on the Krylov method; o the use of pellicular acoustic modes as a vector basis for representing acoustic excitations; o the numerical evaluation of Green functions related to the specific geometry of the problem under investigation. All these ingredients are embedded in the ACTRAN/AR CAE tool which provides unprecedented performance for acoustic radiation analysis. The method will be demonstrated on several applications taken from various industries.

  • PDF

판형 압전 진동자의 굽힘변형 모드에 따른 전압발생 특성에 관한 해석적 연구 (Numerical Analysis of Deformation Mode of Flexible Plate-Type Piezoelectric Module for Evaluating Characteristics of Electrical-Energy Generation)

  • 박정현;박상후
    • 한국정밀공학회지
    • /
    • 제32권8호
    • /
    • pp.735-741
    • /
    • 2015
  • Piezoelectric materials are well-utilized for transforming mechanical vibrations into electrical energy that can be stored and used to power a diversity of devices. In this work, these materials have been studied to improve the efficiency of a piezoelectric system, whereby the shape and vibration mode of a piezoelectric module was changed. The basic shape of the piezoelectric module used in this work comprises a width of 10 mm, a length of 30 mm, and a thickness of 0.2 mm. The structural design of the piezoelectric module is optimized using a Taguchi method to increase the corresponding electrical-energy generation. The maximum terminal voltage was defined as a characteristic value to evaluate the optimal design parameters. Through this work, we propose an optimal structure with an eccentric and centric mass; furthermore, the voltage increase of approximately 26% was obtained by comparing a general plate-vibrating piezosystem with an optimal plate-vibrating piezosystem.

Control of PKM machine tools using piezoelectric self-sensing actuators on basis of the functional principle of a scale with a vibrating string

  • Rudolf, Christian;Martin, Thomas;Wauer, Jorg
    • Smart Structures and Systems
    • /
    • 제6권2호
    • /
    • pp.167-182
    • /
    • 2010
  • An adaptronic strut for machine tools with parallel kinematics for compensation of the influence of geometric errors is introduced. Implemented within the strut is a piezoelectric sensor-actuator unit separated in function. In the first part of this contribution, the functional principle of the strut is presented. For use of one piezoelectric transducer as both, sensor and actuator as so-called self-sensing actuator, the acquisition of the sensing signal while actuating simultaneously using electrical bridge circuits as well as filter properties are examined. In the second part the control concept developed for the adaptronic strut is presented. A co-simulation model of the strut for simulating the controlled multi-body behavior of the strut is set-up. The control design for the strut as a stand-alone system is tested under various external loads. Finally, the strut is implemented into a model of the complete machine tool and the influence of the controlled strut onto the behavior of the machine tool is examined.

Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.;Mehar, Kulmani
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.629-639
    • /
    • 2018
  • In this paper, the vibroacoustic responses of baffled laminated composite sandwich flat panel structure under the influence of harmonic excitation are studied numerically using a novel higher-order coupled finite-boundary element model. A numerical scheme for the vibrating plate has been developed in the frame work of the higher-order mid-plane kinematics and the eigen frequencies are obtained by employing suitable finite element steps. The acoustic responses are then computed by solving the Helmholtz wave equation using boundary element method coupled with the structural finite elements. The proposed scheme has been implemented via an own MATLAB base code to compute the desired responses. The validity of the present model is established from the conformance of the current natural frequencies and the radiated sound power with the available benchmark solutions. The model is further utilized to scrutinize the influence of core-to-face thickness ratio, modular ratio, lamination scheme and the support condition on the sound radiation characteristics of the vibrating sandwich flats panel. It can be concluded that the present scheme is not only accurate but also efficient and simple in providing solutions of the coupled vibroacoustic response of laminated composite sandwich plates.

Natural Frequency Analysis of Spring-Manipulator System for Force Generation Utilizing Mechanical Resonance

  • Kobayashi, Jun;Ohkawa, Fujio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1651-1656
    • /
    • 2005
  • This paper describes a natural frequency analysis conducted to find out a suitable working area for a spring-manipulator system generating a large vibrating force with mechanical resonance. Large force generation is one of the functions that we hope for a robot. For example, a weeding robot is required to generate a large force, because some weeds have roots spreading deeply and tightly. The spring-manipulator system has a spring element as an end-effector, so it can be in a state of resonance with the elasticity of the spring element and the inertial characteristics of the manipulator. A force generation method utilizing the mechanical resonance has potential to produce a large force that cannot be realized by a static method. A method for calculating a natural frequency of a spring-manipulator system with the generalized inertia tensor is proposed. Then the suitable working area for the spring-manipulator system is identified based on a natural frequency analysis. If a spring-manipulator system operates in the suitable working area, it can sustain mechanical resonance and generate a large vibrating force. Moreover, it is shown that adding a mass at the tip of the manipulator expands the suitable working area.

  • PDF

바이몰프형 밴딩 액츄에이터를 이용한 선집속형 초음파 트랜스듀서의 초점 거리 제어 (Focal Length Control of Line-focus Ultrasonic Transducer Using Bimorph-type Bending Actuator)

  • 채민구;하강열;김무준
    • 한국음향학회지
    • /
    • 제22권3호
    • /
    • pp.202-207
    • /
    • 2003
  • 초음파트랜스듀서는 초점거리의 제어를 위해서 각 진동요소에 전기회로를 이용한 위상가중치를 부가하는 방식을 사용하고 있다. 그러나 이러한 방법은 진동요소가 증가함에 따라 전기회로가 더욱 복잡해진다. 본 연구에서는 바이몰프형 액츄에이터를 신호의 송수신을 하는PVDF의 뒷부분에 삽입하여 선집속형 트랜스듀서를 제작하였다. 이 트랜스듀서를 사용하여 액츄에이터에 인가되는 전압 변화에 의해 기계적으로 초점거리를 제어할 수 있었다. 이 방법을 사용한 결과 수중에서 선집속형 초음파 트랜스듀서의 초점거리를 곡률 반경의 10%범위까지 제어 가능함을 확인하였다.

비정질 Fe-Co-Re-B(RE=Nd, Sm, Gd, Tb) 합금의 자기적 성질 (A Study on the Magnetic Properties of Amorphous Fe-Co-RE-B (RE=Nd, Sm, Gd, Tb) Alloys)

  • 김경섭;유성초;김창식;김종오
    • 한국자기학회지
    • /
    • 제1권2호
    • /
    • pp.55-59
    • /
    • 1991
  • 희토류-3d 천이원소인 비정질${[{(Fe_{80}CO_{20})}_{0.98}RE_{0.02}]}_{80}B_{20}(RE=Nd,\;Sm,\;Gd,\;Tb)$ 합금 리본시료에 대한 자기적 성질을 조사하기 위하여 시료진동형 자력계(vibrating sample magnetometor)를 이용하여 77 K부터 900 K까지의 온도 영역에서 포화자화 값을 온도의 함수로 측정 한후, Curie 온도 ($T_{c}$)와 Bloch 상수등을 추정하였다. 이들로 부터 spin wave stiffness 상수, 교환상호작용(exchange interaction)의 범위와 평균자승거리($$)등을 계산하였으며 각 희토류 원소에 대한 치환효과를 비교 분석하였다.

  • PDF

스트레인 게이지 변위추정 센서를 사용한 유동공진 가진기 설계 (Vibration Exciter Design for Flow Resonance with a Displacement Estimator Using Strain Gage)

  • 남윤수;최재혁;강병하
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1874-1881
    • /
    • 2002
  • Heat dissipation technology using the flow resonant phenomenon is a kind of a new concept in the heat transfer area. A vibration exciter is needed to enhance air flow mixing which has the natural shedding frequency of thermal system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator with a displacement estimator using strain gage. An analytical dynamic model for this mechanical vibration exciter is presented and its validity is checked by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, the vibration exciter using strain displacement estimator is developed. During the experimental verification phase, it turns out the high modal resonant characteristics of a vibrating plate are a major barrier against obtaining a high bandwidth vibration exciter.

On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Lin, Hsien-Yuan;Tsai, Ying-Chien
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.701-717
    • /
    • 2006
  • In the existing reports regarding free transverse vibrations of the Euler-Bernoulli beams, most of them studied a uniform beam carrying various concentrated elements (such as point masses, rotary inertias, linear springs, rotational springs, spring-mass systems, ${\ldots}$, etc.) or a stepped beam with one to three step changes in cross-sections but without any attachments. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of the multiple-step Euler-Bernoulli beams carrying a number of lumped masses and rotary inertias. First, the coefficient matrices for an intermediate lumped mass (and rotary inertia), left-end support and right-end support of a multiple-step beam are derived. Next, the overall coefficient matrix for the whole vibrating system is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of distribution of lumped masses and rotary inertias on the dynamic characteristics of the multiple-step beam are also studied.