• 제목/요약/키워드: viable cell

검색결과 1,155건 처리시간 0.026초

전분분해효소와 유산균에 의한 보리의 유산발효 (Lactic Fermentation of Steamed Barley with an Enzyme and a Lactobacillus)

  • 이형춘;구영조;신동화
    • 한국식품영양학회지
    • /
    • 제1권2호
    • /
    • pp.43-49
    • /
    • 1988
  • Fermented barley food was produced by the combining action of an enzyme and a lactobacillus. When Lactobacillus sp. L-5 and commercial liquefying amylase from Tae Pyeong Yang Chemical Co. were selected, inoculated on steamed barley and cultivated at 37$^{\circ}C$ for 48hrs, the fermented product of good quality was obtained. In batch cultivation using rotary drum fermentor, viable cell count reached 1.1$\times$10CFU/g after 12hrs' cultivation, and specific growth rate in logarithmic phase was 0.6hr-1. Viable cell count, acidity, pH, concentration of reducing sugar and viscosity of the 48hrs' fermentation product from rotary drum fermentor was 4.3$\times$108CFU/g, 1.17%, 3.1, 10.7% and 1430cp.

  • PDF

쑥 추출물이 첨가된 Set-Type Yoghurt의 발효 특성 (Fermentation Characteristics of Set-Type Yoghurt from Milk Added with Mugwort Extract)

  • 배인휴;홍기룡;오동환;박정로;최성희
    • 한국축산식품학회지
    • /
    • 제20권1호
    • /
    • pp.21-29
    • /
    • 2000
  • This study was carried out to investigate the fermentation characteristics and storage of set-type yoghurt added mugwort extracts(AME) such as pH, growth of lactic acid bacteria, number of viable cells, viscosity, and sensory characteristics during 24 hours fermentation and 15 days storage. Addition of mugwort extracts was grown rapidly of lactic acid bacteria rather than that of control and also 4 or 8% AME groups were grown similar to control. The drop of AME pH of broth was less compared with control during incubation of lactic acid bacteria. The growth of lactic acid bacteria during incubation of AME yoghurt was not different of viable cell count between AME group and control in beginning time, but the viable cell count of AME groups were increased depended opon addition quantity of AME in ending time. Addition of mugwort extracts was not affect on pH change during yoghurt fermentation and increased a lactic acid bacteria number as well as no effect of yoghurt fermentation in ending time. The viscosity of yoghurt was almost not changed 3 hours after yoghurt mix and increased rapidly 6 hours after yoghurt mix. Although control and 0.5% AME group showed maximum viscosity at 18 hours of fermentation, 1 and 2% AME group showed linear increase until 24 hours of fermentation. Mugwort did not affect pH and viable cel number of lactic acid bacteria during 15 days storage 24 hours after fermentation. Sensory evaluation of the AME yoghurt showed that flavour, texture and acid taste were not affected by addition of mugwort. However, the appearance and taste were dropped by addition of mugwort.

  • PDF

과일류의 염소 소독 농도 및 세척 횟수에 따른 미생물 제거 효과 (Anti-microbial Effects of Washing and Chlorine Treatments on Fresh Fruits)

  • 박종숙;남은숙;박신인
    • 한국식품영양학회지
    • /
    • 제21권2호
    • /
    • pp.176-183
    • /
    • 2008
  • This study examined the anti-microbiological effects of chlorine treatment on the surface of fresh fruits, in order to improve microbiological safety in school foodservice operations. Non-peeled fruit(strawberries) and peeled fruit(bananas) were treated with different concentrations of chlorinated water and rinsing numbers, followed by microbiological testing. The fruits were immersed at different concentrations of chlorinated water(0 ppm, 50 ppm, and 100 ppm) and durations(3 min and 5 min), and were then rinsed with tap water(one time, two times, or three times). The total viable cell counts of both the strawberries and bananas ranged from $10^3$ CFU/g to $10^4$ CFU/g, and coliform levels ranged from $10^2$ CFU/g to $10^3$ CFU/g. As the chlorine concentration, immersion time, and rinsing number increased, anti-microbiological activity increased. The largest microbial reduction was shown with immersion for 5 min in 100 ppm chlorinated water and three rinsings. In the strawberries, this treatment reduced the initial population of total viable cells and coliforms by 3.29 log CFU/g and to an undetectable level, respectively, no total viable cells or coliforms were detected on the banana surface following this treatment. However, after a sterilization treatment with immersion for 5 min in 50 ppm chlorinated water and three rinsings, the total viable cell counts and coliform counts of the strawberries and bananas decreased to acceptable levels, based on the microbiological standards for ready-to-eat foods. Overall, it was shown that the sterilization treatment of 50 ppm chlorinated water, soaking for 5 min, and three rinsings provided an effective reduction in surface microbes, and enhanced the microbiological safety of the fruit.

Isolation and Identification of Staphylococcus sp. from Korean Fermented Fish Products

  • Um, Mi-Na;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권5호
    • /
    • pp.340-346
    • /
    • 1996
  • In order to find out if staphylococci occur in significant numbers in Korean fermented fish products, a total of 40 different fermented fish products were collected from different markets in Korea and analyzed for their physico-chemical and microbiological states. The pH, salt concentration and water activity of the products were measured and the total viable cell count and the number of Staphylococcus grown on mannitol salt agar were determined. The identification of the strains of Staphylococcus were made by API Staph Strip and MIS identification kits, and the physiological properties of the identified strains were further characterized by different conventional methods. The pH, salt content and water activity of fermented fish samples varied widely from 4.8 to 7.1, 7.4-28.7$%$ and 0.77-0.84, repectively, depending on the type of product. The total viable cell count varied from $10^4-10^9$ cfu/ml, and most of the samples had $10^5-10^6$ cfu/ml No correlation was found between the viable cell count and the pH, NaCl concentration and water activity of the samples. Among the 35 colonies identified as Staphylococcus strains by the identification kits, S. xylosus was the most frequently occurring strain marking 17, and S. warneri was 8, S. epidermidis 4 and S. cohnii 2. S. hominis, S. saprophyticus, S. haemolyticus and S. aureus were also identified once each. In some samples (K-3, P-6, K-8, G-5 and G-10), 2-3 different species of Staphylococcus were found. Considering the region of sampling, among the 10 samples from Kunsan 5 were identified as S. warneri, while in the other regions S. xylosus was predominant. Although the physiological characteristics of the identified strains were generally consistent with those in Bergey's Manual, some discrepances were also observed. All the strains were highly salt tolerant, growing in the media containing over 18$%$ NaCl. All the strains except S. aureus (G-11) showed negative in hemolysis activity, plasma coagulation and DNase tests. All the strains including S. aureus (G-11) showed negative in enterotoxin test.

  • PDF

구리에 의해 유도된 VBNC 대장균의 특성 (Characterization of Viable But Nonculturable Condition of Escherichia coli Induced with Copper)

  • 구형근;박상열;김숙경
    • 한국미생물·생명공학회지
    • /
    • 제36권3호
    • /
    • pp.209-214
    • /
    • 2008
  • VBNC(Viable but nonculturable)란 생존에 불리한 환경하에서 살아 있으나 일반 영양배지에서 자라지 못하는 미생물의 상태를 나타낸다. 본 연구는 구리를 이용해 Escherichia coli에서 VBNC를 유도하고 이의 특성을 살펴보았다. 구리를 처리한 후 전통적인 평판 배양법에 의한 집락 형성계수(colony forming unit, CFU)를 측정한 결과 배양되지는 않으나, Live/Dead BacLight bacterial viability kit 염색 후 유세포계수기로 측정한 결과 살아있는 미생물로 계수되어 VBNC 상태가 확인하였다. VBNC 유도된 미생물로부터 genomic DNA와 RNA를 분리하고 이들의 안정성을 관찰하였는데 DNA에 비해 RNA의 붕괴가 많이 진행되었음을 확인할 수 있었고 RNA의 붕괴는 특정크기로 붕괴되는 것으로 관찰되었다. 또한 생물전용 투과전자현미경(Bio-Transmission Electron Microscope, Bio-TEM)을 통해 VBNC 세포의 형태를 관찰하였는데 VBNC 상태에서는 정상상태에 비해 periplasmic space가 온전하지 못하고 세포내막과 세포 외막이 분리되었으며 세포질의 양이 현저히 감소됨이 관찰되었다.

Long-Term Starvation Induces the Viable-but-Nonculturable Condition in Lactobacillus crispatus KLB46

  • 이석용;김주현;장정은;김승철;윤현식;소재성
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.918-922
    • /
    • 2001
  • In a previous study, we have isolated a number of lactobacilli from Korean women, and one of them (KLB46) was identified as Lactobacillus crispatus by 16S rRNA gene sequencing. For the ecological treatment of bacterial vaginosis (BV) cell suspension of L. crispatus KLB46 was instillated into BV patients. L. crispatus KLB46 was found to persist for several days in cell suspension with no nutrients. In this study, in order to assess the influence of starvation on physiological activity, we compared the viability and culturability of KLB46 following suspension in various buffer solutions. A pair of in situ fluorescent dye was used to assess viability (i.e. membrane integrity) and the culturability was examined by plate count assay. A rapid epifluorescence staining method using the LIVE/DEAD Bacterial Viability Kit $(BacLight^{TM})$ was applied to estimate both viable and total counts of bacteria in cell suspension. $BacLight^{TM}$ is composed of two nucleic acid-binding stains ($SYTO\;9^{TM}$ and propidium iodide). $SYTO\;9^{TM}$ penetrates all bacterial membranes and stains the cells green while propidium iodide only penetrates cells with damaged membranes, therefore the combination of the two stains produces red fluorescing cells. Optimal staining conditions for $BacLight^{TM}$ were found to be with 0.0835M $SYTO\;9^{TM}$ and 0.05M propidium iodide for 15 min incubation at room temperature in dark. When cells were microscopically examined during 140 hours of starvation, the culturability decreased markedly while the viability remained relatively constant, which suggests that large fraction of KLB46 cells became viable but non-culturable (VBNC) upon starvation.

  • PDF

생식용 굴(Crassostrea gigas) 작업장의 위생안전성에 대한 모니터링 (Safety Monitoring of a Processing Plant for Preparing Raw Oysters Crassostrea gigas for Consumption)

  • 강경태;박선영;최종덕;김민주;허민수;김진수
    • 한국수산과학회지
    • /
    • 제50권2호
    • /
    • pp.120-129
    • /
    • 2017
  • This study assessed the safety of raw oysters Crassostrea gigas for consumption during processing in a processing plant. Bacterial contamination (e.g., viable cell counts, coliform groups, Escherichia. coli and pathogenic bacteria) and chemical contamination (e.g., heavy metals and shellfish toxins) were measured on raw oysters, a processing equipment, employees and work areas. No total mercury, lead, paralytic shellfish poison, diarrheic shellfish poison or norovirus was detected in any post-harvested oyster samples. However, the cadmium level ranged from 0.1-0.2 mg/kg. The viable cell count, E. coli and coliform group levels in post-harvested oysters ranged from 4.00-4.54 log CFU/g, ND-210 MPN/100 g and 110-410 MPN/100 g, respectively. The viable contaminating cell counts on employees, equipment and work areas were in the range of $0.90-3.46log\;CFU/100cm^2$. Airborne bacteria in the work areas ranged from 0.60 to 1.81 log CFU/plate/15 min. Thus, no significant health risks were detected in the processing plant.

The Impact of Proteolytic Pork Hydrolysate on Microbial, Flavor and Free Amino Acids Compounds of Yogurt

  • Lin, Jinzhong;Hua, Baozhen;Xu, Zhiping;Li, Sha;Ma, Chengjie
    • 한국축산식품학회지
    • /
    • 제36권4호
    • /
    • pp.558-565
    • /
    • 2016
  • The aim of this study was to investigate the influence of proteolytic pork hydrolysate (PPH) on yoghurt production by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Fresh lean pork was cut into pieces and mixed with deionized water and dealt with protease, then the resulting PPH was added to milk to investigate the effects of PPH on yoghurt production. The fermentation time, the viable cell counts, the flavor, free amino acids compounds, and sensory evaluation of yoghurt were evaluated. These results showed that PPH significantly stimulated the growth and acidification of the both bacterial strains. When the content of PPH reached 5% (w/w), the increased acidifying rate occurred, which the fermentation time was one hour less than that of the control, a time saving of up to 20% compared with the control. The viable cell counts, the total free amino acids, and the scores of taste, flavor and overall acceptability in PPH-supplemented yoghurt were higher than the control. Furthermore, the contents of some characteristic flavor compounds including acids, alcohols, aldehydes, ketones and esters were richer than the control. We concluded that the constituents of PPH such as small peptide, vitamins, and minerals together to play the stimulatory roles and result in beneficial effect for the yoghurt starter cultures growth.

Lactococcus lactis 1370가 인공치태 형성에 미치는 영향 (Effect of Lactococcus lactis 1370 on the Formation of Artificial Plaque)

  • 정진;임성이;오종석
    • 대한미생물학회지
    • /
    • 제35권1호
    • /
    • pp.77-85
    • /
    • 2000
  • Streptococcus mutans is the most important causative bacteria of dental caries among the oral bacteria. Lactococcus lactis 1370 was isolated from the oral cavity of child. The effect of Lactococcus lactis 1370 on the formation of artificial plaque by Streptococcus mutans was studied. 1. The insoluble substances and bacteria were much more attached on the wall of disposable cuvette in the culture of Streptococcus mutans than in the combined culture of Streptococcus mutans and Lactococcus lactis 1370. 2. The mean weight of produced artificial plaque on the wires in the beaker was 131.7 mg in the culture of Streptococcus mutans only, whereas being reduced to 6.4 mg in the combined culture of Streptococcus mutans and Lactococcus lactis 1370 (p<0.05). The viable cell didn't show the significant difference between them after culturing. 3. When Streptococcus mutans was cultured in the media containing culture supernatant of Lactococcus lactis 1370 cultured in M17 broth containing 0.5% yeast extract and 5% sucrose, the mean weight of produced artificial plaque was 8.0 mg on the wires, whereas being 125.4 mg in the media without culture supernatant of Lactococcus lactis 1370 (p<0.05). The viable cell didn't show the significant difference between them after culturing. 4. When Streptococcus mutans was cultured in the media containing soluble polymer produced by Lactococcus lactis 1370, the mean weight of produced artificial plaque was significantly reduced compared with being cultured in the media without soluble polymer (p<0.05). The viable cell didn't show the significant difference between them after culturing. 5. The soluble polymer produced by Lactococcus lactis 1370 was glucan. 6. The glucan produced by Lactococcus lactis 1370 was water-soluble glucan containing ${\alpha}$-1,6-glucose linkage as the main linkage. These results suggest that the artificial plaque formed by Streptococcus mutans is inhibited by water-soluble glucan produced by Lactococcus lactis 1370.

  • PDF

Optimization of Lactic Acid Fermentation of Prickly Pear Extract

  • Son, Min-Jeong;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • 제9권1호
    • /
    • pp.7-13
    • /
    • 2004
  • Lactic acid fermentation of prickly pear extract (PPE) was performed by Lactobacillus rhamnosus LS, Lactobacillus bulgaricus, and Lactobacillus brevis. The PPE was pasteurized to eliminate indigenous microorganisms as well as to dissolve the partially insoluble pulp. The PPE fermented without yeast extract by L. rhamnosus LS exhibited 0.57% acidity and 3.5${\times}$10$^{8}$ CFU/mL bacteria count. With the addition of 0.2% edible yeast extract the PPE fermented by L. rhamnosus LS exhibited 1.15% acidity,2.7${\times}$10$^{9}$ CFU/mL bacteria count and 95.0% retention of red color. When 5% fructose syrup was added, the PPE fermented by L. rhamnosus LS had 1.09% acidity, 6.5${\times}$10$^{8}$ CFU/mL, and 97.7% retention of red color. With 1∼3% (w/v) concentrations of starter, the PPE fermented by L. bulgaricus and L. brevis showed 0.97% and 0.65% acidities, respectively. The viable cell counts from L. rhamnosus LS fermentation were higher compared with those of other LAB. During cold storage at 4$^{\circ}C$, the viable cell count was well maintained for 3 weeks, but then rapidly decreased. The red pigment was highly stable during cold storage for 4 weeks. The pasteurized PPE fortified with 5% fructose syrup, 0.2% yeast extract, and 0.05% CaCO$_3$ was successfully fermented by inoculating with 3% LAB and incubating at 3$0^{\circ}C$ for 2 days. Both viable cell counts and the red color of the fermented PPE were well maintained during cold storage for 3 weeks.