• Title/Summary/Keyword: viability inhibition

Search Result 829, Processing Time 0.022 seconds

Immune-Enhancing Activity of Hydrangea macrophylla subsp. serrata Leaves through Macrophage Activation (산수국 잎의 대식세포 활성화를 통한 면역증진활성)

  • Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.87-87
    • /
    • 2020
  • In this study, we investigated the immune-enhancing activity of water extracts from Hydrangea macrophylla subsp. serrata (WE-HML). WE-HML increased cell viability and production of immunomodulators, which contributed to activating phagocytic activity in RAW264.7 cells. Inhibition of JNK and NF-κB reduced the production of immunomodulators by WE-HML. ROS inhibition suppressed the production of immunomodulators, and the activation of JNK and NF-κB signaling by WE-HML. TLR4 inhibition attenuated the production of immunomodulators, and activation of JNK and NF-κB signaling by WE-HML. In the immunosuppressed mouse model, WE-HML increased the spleen index, the levels of the cytokines, the numbers of white blood cells, lymphocytes, and neutrophils. However, WE-HML inhibited LPS-mediated overproduction of pro-inflammatory mediators in RAW264.7 cells, which indicated that WE-HML may have anti-inflammatory activity under excessive inflammatory conditions. Taken together, WE-HML may be considered to have immune-enhancing activity and expected to be used as a potential immune-enhancing agent.

  • PDF

Anti-inflammatory Effects of Smilacis Glabrae Rhizoma in Raw 264.7 Cells (토복령(土茯笭)의 Raw 264.7 세포에 대한 항염효과)

  • Oh, Sung-Won;Kim, Byoung-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.288-297
    • /
    • 2009
  • Objective : Inflammatory cytokines have a close relationship to insulin dependent diabetes mellitus (IDDM). The inhibitory effect of Smilacis Glabrae Rhizoma (SGR) were examined on production of nitric oxide (NO), prostaglandin $E_2$ $(PGE_2)$, synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and NF-${\kappa}$B activation in Raw 264.7 cells. Methods: Raw 264.7 cells were pretreated with SGR(20, 50, 100 ${\mu}g$/ml), and then cultured with lipopolysaccharides (LPS). Cell viability was measured by MTT assay; inhibition of NO, $PGE_2$, and TNF-${\alpha}$ production were measured by Griess reagent and enzyme-linked immunosorbent assay(ELISA). Induction of COX-2 and iNOS were determined by western blotting analysis. Inhibition of NF-${\kappa}$B was measured by immunofluorescence assay (IFA). Results: SGR inactivated NF-${\kappa}$B, and inhibited the production of NO, iNOS, and $PGE_2$. Inhibition of COX-2 and TNF-${\alpha}$ could not be confirmed. Conclusions: From the above result. SGR was found to have an anti-inflammatory effect of inhibition of NO, iNOS, and $PGE_2$ production via inhibition of NF-${\kappa}$B.

  • PDF

siRNA-mediated Inhibition of hTERC Enhances Radiosensitivity of Cervical Cancer

  • Chen, Min;Xing, Li-Na
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.5975-5979
    • /
    • 2012
  • Background: To investigate the influence of telomerase activity, apoptosis, radiosensitivity of cervical cancer after siRNA-mediated knockdown of telomerase RNA and evaluate in vivo growth with gene interference. Methods: We studied siRNA-targeting-telomerase RNA transfection into the Hela cell line. Expression of hTERC mRNA was detected by RT-PCR and telomerase activity was measured by the TRAP assay. Growth inhibition was determined by MTT assay and radiosensitivity of the cervical cancer cells was examined by colony formation assay. In addtion, effects of hTERC inhibition in vivo were studied by injection of siRNA-transfected Hela cells into nude mice. Results: The hTERC siRNA effectively downregulated the expression of hTERC mRNA and also reduced the telomerase activity to 30% of the untreated control vlaue. The viability of hTERC siRNA transfected Hela cells was reduced by 44.7% after transfection. After radiation treatment, the radiosensitivity of Hela cells with hTERC knockdown was increased. In vivo, the tumors developing from the hTERC siRNA-transfected cells were of reduced size, indicating that the hTERT siRNA also depressed the tumorigenic potential of the Hela cells. Conclusions: Our results supported the concept of siRNA-mediated inhibition of telomerase mRNA which could inhibit the expression of hTERC and telomerase activity. Furthermore, radiosensitivity was upregulated after knockdown the hTERC in vivo and in vitro.

USP14 inhibition regulates tumorigenesis by inducing apoptosis in gastric cancer

  • Mi Yea Lee;Min-Jee Kim;Jun-O Jin;Peter Chang-Whan Lee
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.451-456
    • /
    • 2023
  • Deubiquitinases (DUBs) are an essential component of the ubiquitin-proteasome system (UPS). They trim ubiquitin from substrate proteins, thereby preventing them from degradation, and modulate different cellular processes. Ubiquitin-specific protease 14 (USP14) is a DUB that has mainly been studied for its role in tumorigenesis in several cancers. In the present study, we found that the protein levels of USP14 were remarkably higher in gastric cancer tissues than in the adjacent normal tissues. We also demonstrated that the inhibition of USP14 activity using IU1 (an USP14 inhibitor) or the inhibition of USP14 expression using USP14-specific siRNA markedly reduced the viability of gastric cancer cells and suppressed their migratory and invasive abilities. The reduction in gastric cancer cell proliferation due to the inhibition of USP14 activity was a result of the increase in the degree of apoptosis, as evidenced by the increased expression levels of cleaved caspase-3 and cleaved PARP. Furthermore, an experiment using the USP14 inhibitor IU1 revealed that the inhibition of USP14 activity suppressed 5-fluorouracil (5-FU) resistance in GC cells. Collectively, these findings indicate that USP14 plays critical roles in gastric cancer progression and suggest its potential to serve as a novel therapeutic target for gastric cancer treatment.

The dependence of nitric oxide synthase inhibition caused by cigarette smoking extracton the cellular aging of bovine aortic endothelial cells

  • Le, VuQuynhAnh;Kim, Yang-Hoon;Min, Jiho
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.10.1-10.6
    • /
    • 2014
  • Objectives Cigarette smoking had been recorded as the main cause of impaired endothelium-dependent vasodilation in smokers by reducing nitric oxide (NO), a production of endothelial nitric oxide synthase (eNOS). However, the mechanism of NO impairment via eNOS activity is unclear until now. In this study, cell passage is suggested to be a relevant factor to eNOS expression under cigarette smoking stress. Methods Bovine aortic endothelial cells (BAECs) were chosen as the research subject with passages ranking from 6 to 9 (6P to 9P). After exposure of cigarette smoking extract (CSE) solution, MTT assay and Western blot method were performed to check the cell viability as well as eNOS protein concentration. In these experiments, four concentrations of CSE at 0.5, 1, 2, and 4% were selected for treatment. Results Our results showed that cells almost died at 4% of CSE. Besides, eNOS protein mass had a linear decrease under the increase of CSE concentration. In addition, the effect of CSE on eNOS expression was dissimilar between different passages. Conclusions This study indicated that CSE had effect on both cell viability and eNOS expression. Besides, a reduction in protein mass was matched with the decrease of cell viability due to CSE tress. Last but not least, the response of eNOS protein to different concentration of CSE at different passages was disparate, making the hypothesis about cell passage related inhibition of eNOS caused by CSE solution.

Induction of the Growth Inhibition and Apoptosis by Beevenom in Human Breast Carcinoma MCF-7 Cells (봉독약침액(蜂毒藥鍼液)에 의한 인체유방암세포(人體乳房癌細胞)의 성장억제(成長抑制) 및 세포사(細胞死)에 관한 연구(硏究))

  • Yeo, Sung-won;Seo, Jung-chul;Choi, Yung-hyun;Jang, Kyung-jeon
    • Journal of Acupuncture Research
    • /
    • v.20 no.3
    • /
    • pp.45-62
    • /
    • 2003
  • Objective : To examine the effects of Beevenom on the cell proliferation of human breast carcinoma cell line MCF-7, we performed various experiments such as does-dependent effect of Beevenom on cell proliferation and viability, morphological changes, and alterations of apoptosis/cell cycle-regulatory gene products. Methods : Beevenom induced cell viability and proliferation of MCF-7 cells in a concentration-dependent manner. The anti-proliferative effect by Beevenom treatment in MCF-7 cells was associated with morphological changes such as membrance shrinking and cell rounding up. Results : Beevenom induced apoptotic cell death in a concentration-dependent manager, which was associated with degradation of ${\beta}$-catenin, an apoptotic target protein. Beevenom induced the Bax expressions, a pro-apoptotic gene, both in protein and mRNA levels, however, the levels of Bcl-$X_{S/L}$ expression, an anti-apoptotic gene, were down-regulated in Beevenom-treated cells. Western blot analysis and RT-PCT data revealed that the levels of cyclin of B1 protein and cyclin E mRNA were reduced by Beevenom treatment in MCF-7 cells, respectively, where as the expression of tumor suppressor p53 and cyclin dependent kinase inhibitor p21 mRNA were markedly increased in a concentration-dependent fashion. Conclusions : Taken together, these findings suggest that Beevenom induced inhibition of human breast cancer cell proliferation is associated with the induction of apoptotic cell death and Beevenom may have therapeutic potential in human breast cancer.

  • PDF

Inhibition Effect of Zizania latifolia on Apoptosis Induced by $H_2O_2$ in Neuro2A Cell ($H_2O_2$로 유발된 Neuro2A 신경세포고사에 대한 줄풀의 억제 효과)

  • Park, Won-Hyung;Cha, Yun-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.1062-1067
    • /
    • 2005
  • The purpose of this study was to examine the inhibition effect of Zizania latifolia that has been used heart disease, Diabetes Mellitus and Skin disease for a long time on apoptosis induced by $H_2O_2$ in Neuro2A cell. Neuro2A cells were cultivated in RPMI(GibcoBRL) with $5\%$, FBS and treated with $H_2O_2$, and Zizania latifolia. We measured the cell viability and analyzed DNA fragmentation. Activity of PARP, Cytochrome C, caspase-9, caspase-3, p53, p21, Bax and Bcl-2 in the cell was examined by using western blot. The cell viability in Zizania latifolia treatment (60ug/ml<) decreased significantly compared with that of none treatment. (p<0.001) Zizania latifolia increased cell viability about twice as much as that being injury by $H_2O_2$. (Zizania Latifolia 20ug/ml, $H_2O_2$ 200uM, P<0.001) DNA fragmentation developed by $H_2O_2$, but was not developed in Zizania latifolia treatment. PARP, Cytochrome C, caspase-9 and caspase-3 activated all by $H_2O_2$ but were not activated in Zizania latifolia treatment.. P53, P2l and Bu activated by $H_2O_2$, and Bcl-2 got into inactivation. But the opposite results appeared in Zizania latifolia treatment. In conclusion, these results suggest that Zizania latifolia inhibit the development of DNA fragmentation and apoptosis by $H_2O_2$ and the antioxidant action of Zizania latifolia is effective. More researches about effect of Zizania latifolia are considered to need.

Anti-oxidation and Anti-wrinkling Effects of Jeju Horse Leg Bone Hydrolysates

  • Kim, Dongwook;Kim, Hee-Jin;Chae, Hyun-Seok;Park, Nam-Gun;Kim, Young-Boong;Jang, Aera
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.844-851
    • /
    • 2014
  • This study focused on the anti-oxidative and collagenase- and elastase inhibition effects of low molecular weight peptides (LMP) from commercial Jeju horse leg bone hydrolysates (JHLB) on pancreatin, via enzymatic hydrolysis. Cell viability of dermal fibroblasts exposed to UVB radiation upon treatment with LMP from JHLB was evaluated. Determination of the antioxidant activity of various concentrations of LMP from JHLB were carried out by assessing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis-3-ethybenzothiazoline-6-sulphonic acid (ABTS) radical scavenging activity, ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC). The DPPH radical scavenging activity of LMP from JHLB (20 mg/mL) was 92.21% and ABTS radical scavenging activity (15 mg/mL) was 99.50%. FRAP activity (30 mg/mL) was $364.72{\mu}M/TE$ and ORAC activity (1 mg/mL) was $101.85{\mu}M/TE$. The anti-wrinkle potential was assessed by evaluating the elastase- and collagenase inhibition potential of these LMP. We found that 200 mg/mL of LMP from JHLB inhibited elastase activity by 41.32%, and 100 mg/mL of LMP from JHLB inhibited collagenase activity by 91.32%. The cell viability of untreated HS68 human dermal fibroblasts was 45% when exposed to a UVB radiation dose of $100mJ/cm^2$. After 24 h of incubation with $500{\mu}g/mL$ LMP from JHLB, the cell viability increased to 60%. These results indicate that LMP from JHLB has potential utility as an anti-oxidant and anti-wrinkle agent in the food and cosmetic industry. Additional in vivo tests should be carried out to further characterize these potential benefits.

Effects of Extracts Derived from Red Ginseng Residue on Antioxidant Activity and Elastase Inhibition (홍삼박추출물의 항산화활성 및 주름개선 효과)

  • Lee, Mi-Yeon;Kim, Bo-Ae;Yang, Jae-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.658-666
    • /
    • 2016
  • We produced the Red ginseng residue water(RGW), ethanol(RGE), 1,3-butylene glycol(RGB) extract from Red ginseng residues, analyzed the components of the extracts by HPLC, and evaluated the cell viability on B16F10, antioxidant and anti-wrinkle effects for application of cosmetics. As a result, RGW, RGE, RGB have various ginsenoside and its content of RGB were higher than RGW, RGE as component analysis by using high performance liquid chromatography(HPLC). RGW showed similar with RGB in cell viability on B16F10 which were higher than RGE. DPPH radical scavenging activity increased according to the RGE>RGB>RGW. SOD-like activity increased according to the RGB>RGE>RGW. Also, elastase inhibition effect increased according to the RGW>RGB>RGE. These results suggested that RGB and RGW may have potential for the application of antioxidant and anti-wrinkle effects for cosmetics.

Inhibition Effect on Neuro2A Cell by Apoptosis of Zizania latifolia Rhizoma (줄풀 줄기의 Neuro2A 신경세포고사에 대한 억제 효과)

  • Cha Yun-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.149-155
    • /
    • 2006
  • To prevent human body injury from oxidative stress, antioxidants are very important and many research about antioxidants are generally being conducted. Hydrogen peroxide($H_2O_2$) that is one of vitality oxygen species has been seen that cause various diseases, DNA damage and gene change. The purpose of this study was to examine the inhibition effect of Zizania latifolia Rhizoma on apoptosis induced by $H_2O_2$ in Neuro2A cell. Neuro2A cells were cultivated in RPMI(GibcoBRL) with 5% FBS and treated with $H_2O_2$ and Zizania latifolia Rhizoma. We measured the cell viability and analyzed DNA fragmentation. Activity of PARP, Cytochrome C, caspase-9, caspase-3, p53, p21, Bax and Bcl-2 in the cell was examined dy using western blot. The results obtained were as Follows: The cell viability in Zizania latifolia Rhizoma treatment (60ug/ml<) decreased significantly compared with that of none treatment. (P<0.001) Zizania latifolia Rhizoma increased cell viability about twice as much as that being injury by $H_2O_2$. (Zizania Latifolia Rhizoma 20ug/ml, $H_2O_2$ 200uM, P<0.001) DNA fragmentation developed by $H_2O_2$, but was not developed in Zizania latifolia Rhizoma treatment. PARP, Cytochrome C, caspase-9 and caspase-3 activated all by $H_2O_2$ but were not activated in Zizania latifolia Rhizoma treatment. P53, P2l and Bax activated dy $H_2O_2$, and Bcl-2 got into inactivation. But the opposite results appeared in Zizania latifolia Rhizoma treatment. In conclusion, these results suggest that Zizania latifolia Rhizoma inhibit the development of DNA fragmentation and apoptosis by $H_2O_2$ and the antioxidant action of Zizania latifolia Rhizoma is effective. More researches about effect of Zizania latifolia Rhizoma are considered to need.