• Title/Summary/Keyword: viability inhibition

Search Result 829, Processing Time 0.027 seconds

Evaluation of Antioxidant Activities of Peptides Isolated from Korean Fermented Soybean Paste, Chungkukjang

  • Kim, Sun-Lim;Chi, Hee-Youn;Kim, Jung-Tae;Hur, On-Sook;Kim, Deog-Su;Suh, Sae-Jung;Kim, Hyun-Bok;Cheong, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.4
    • /
    • pp.349-360
    • /
    • 2011
  • The objectives of present study were to characterize the peptides which were isolated from Korean fermented soybean paste, chungkukjang, and to determine their antioxidant activities. Four fractions were collected from the methanol extract of chungkukjang by using a recycling preparative HPLC. Among fractions, Fr-2 was identified to be highly potent free radical scavenging activity in the assay of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and nitroblue tetrazolium(NBT)-reduction inhibition. Base on antioxidant effects, fraction Fr-2 was employed for the refraction with a prep-column and separated into five fractions of which two fractions were identified to have higher antioxidant activity. To confirm the amino acid constituents of antioxidant fractions Fr-2-2 and Fr-2-3 were analyzed, and eight kinds of amino acids such as aspartic acid, threonine, serine, glutamic acid, glycine, lysine, histidine, and arginine were identified as the constituent amino acids. Antioxidant activities of the separated peptides were further assessed cell viability with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl terazolium bromide (MTT), and fluorescence-activated cell sorting (FACS) analysis of H4IIE cells treated with hydrogen peroxide (H2O2). Chungkukjang peptides have shown their ability to protect H4IIE rat hepatoma cells against H2O2- induced oxidative stress by concentration and time-dependent manner. Therefore, These results indicated that fermented soybean paste chungkukjang will be promoted the antioxidant and radical scavenging activities, and beneficial for health. The antioxidant peptide fractions Fr-2-2 and Fr-2-3 were denominated as P-NICS-1 and P-NICS-2, respectively. However, further studies were required to clarify their amino acid sequences and molecular properties, and physiological significances.

Protective role of oligonol from oxidative stress-induced inflammation in C6 glial cell

  • Ahn, Jae Hyun;Choi, Ji Won;Choi, Ji Myung;Maeda, Takahiro;Fujii, Hajime;Yokozawa, Takako;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.9 no.2
    • /
    • pp.123-128
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Natural products or active components with a protective effect against oxidative stress have attracted significant attention for prevention and treatment of degenerative disease. Oligonol is a low molecular weight polyphenol containing catechin-type monomers and oligomers derived from Litchi chinensis Sonn. We investigated the protective effect and its related mechanism of oligonol against oxidative stress. MATERIALS/METHODS: Oxidative stress in C6 glial cells was induced by hydrogen peroxide ($H_2O_2$) and the protective effects of oligonol on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) synthesis, and mRNA expression related to oxidative stress were determined. RESULTS: Treatment with oligonol inhibited NO and ROS formation under cellular oxidative stress in C6 glial cells. In addition, it recovered cell viability in a dose dependent-manner. Treatment with oligonol also resulted in down-regulated mRNA expression related to oxidative stress, nuclear factor kappa-B (NF-${\kappa}B$) p65, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), compared with the control group treated with $H_2O_2$. In particular, expression of NF-${\kappa}B$ p65, COX-2, and iNOS was effectively reduced to the normal level by treatment with $10{\mu}g/mL$ and $25{\mu}g/mL$ of oligonol. CONCLUSIONS: These results indicate that oligonol has protective activity against oxidative stress-induced inflammation. Oligonol might be a promising agent for treatment of degenerative diseases through inhibition of ROS formation and NF-${\kappa}B$ pathway gene expression.

Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells

  • Wang, Xu De;Su, Guang Yue;Zhao, Chen;Qu, Fan Zhi;Wang, Peng;Zhao, Yu Qing
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.133-143
    • /
    • 2018
  • Background: AD-2 (20(R)-dammarane-3b, 12b, 20, 25-tetrol; 25-OH-PPD) is a ginsenoside and isolated from Panax ginseng, showing anticancer activity against extensive human cancer cell lines. In this study, effects and mechanisms of 1C ((20R)-3b-O-(L-alanyl)-dammarane-12b, 20, 25-triol), a modified version of AD-2, were evaluated for its development as a novel anticancer drug. Methods: MTT assay was performed to evaluate cell cytotoxic activity. Cell cycle and levels of reactive oxygen species (ROS) were determined using flow cytometry analysis. Western blotting was employed to analyze signaling pathways. Results: 1C concentration-dependently reduces prostate cancer cell viability without affecting normal human gastric epithelial cell line-1 viability. In LNCaP prostate cancer cells, 1C triggered apoptosis via Bcl-2 family-mediated mitochondria pathway, downregulated expression of mouse double minute 2, upregulated expression of p53 and stimulated ROS production. ROS scavenger, N-acetylcysteine, can attenuate 1C-induced apoptosis. 1C also inhibited the proliferation of LNCaP cells through inhibition on $Wnt/{\beta}-catenin$ signaling pathway. Conclusion: 1C shows obvious anticancer activity based on inducing cell apoptosis by Bcl-2 family-mediated mitochondria pathway and ROS production, inhibiting $Wnt/{\beta}-catenin$ signaling pathway. These findings demonstrate that 1C may provide leads as a potential agent for cancer therapy.

Anti-Oxidant Activity and Anti-Inflammatory Effects of Spiraea fritschiana Schneid Extract (참조팝나무 추출물의 항산화 활성 및 항염증 효과)

  • Choi, Eun Yeong;Heo, Seong Il;Kwon, Yong Soo;Kim, Myong Jo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Background : We studied the anti-oxidant activity and anti-inflammatory effects of Spiraea fritschiana Schneid extract (SFSE). Methods and Results : The SFSE was prepared using methanol and was evaluated for its total phenol and flavonoid content, DPPH (1,1-diphenyl-2-picrylhydrazyl) free-radical scavenging activity, reducing power, and effect on nitric oxide (NO) production, and cell viability by using real-time polymerase chain reaction (PCR). The total phenol content was $212.78{\mu}g{\cdot}galli$c acid equivalent (GAE)/mg and the total flavonoid content was $66.84{\mu}g{\cdot}quercetin$ equivalent (QE)/mg. The extract showed antioxidant activity (DPPH free-radical scavenging activity) with $RC_{50}$ value of $76.61{\mu}g/m{\ell}$. The reducing power of the extract was Abs 0.58 at $250{\mu}g/m{\ell}$. Cell viability was determined using the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. To evaluate anti-inflammatory activity, we examined the inhibitory effects on lipopolysaccharide-(LPS)-induced NO production in RAW 264.7 cells. The NO inhibition rate was 90% at $200{\mu}g/m{\ell}$ SFSE. At the same concentration, the expression of pro-inflammatory genes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 also decreased. Conclusions : Our results suggest that SFSE is a novel resource for the development of foods and drugs that possess anti-oxidant and anti-inflammatory activity.

Synergistic Effect of Natural Killer Cells and Bee Venom on Inhibition of NCI-H157 Cell Growth

  • Sung, Hee Jin;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.33 no.1
    • /
    • pp.47-56
    • /
    • 2016
  • Objectives : This study examined the effects of Bee venom on apoptosis in NCI-H157 human lung cancer cells and for promoting the apoptosis effects of Natural killer cell. Methods : Bee venom and Natural killer-92 cells were cultured either separately from or together with NCI-H157 cells for 24 hours. To figure out whether Bee venom enhances the cytotoxic effect of Natural Killer-92 cells, a cell viability assay was conducted. To observe the changes in Death receptors, apoptotic regulatory proteins and Nuclear $Factor-{\kappa}B$, western blot analysis was conducted. To observe the effect of Bee venom through an extrinsic mechanism, a transfection assay was conducted. Results : 1. Natural killer-92 cells and Bee venom significantly inhibited the growth of NCI-H157 cells and co-culture had more inhibitory effect than the separate culture. 2. Expressions of Fas, DR3, DR6, Bax, caspase-3, caspase-8, cleaved caspase-3, cleaved caspase-8 were increased, and expressions of Bcl-2 and cIAP were decreased. More efficacy was observed in co-culture than in separate culture. 3. Nuclear $Factor-{\kappa}B$ activation was clearly decreased. And co-culture showed much less activation than separate culture. 4. As a result of treatment for DR-siRNA, the reduced cell viability of NCI-H157 cells and the activity of Nuclear $Factor-{\kappa}B$ were increased. With this, it can be seen that Bee venom and Natural killer-92 cells have an effect on the cancer cells through the extrinsic mechanism. Conclusion : Bee venom is effective in inhibiting the growth of human lung cancer cells. Furthermore Bee venom effectively enhances the functions of Natural killer cells.

Induction of apoptosis by methanol extracts of Ficus carica L. in FaDu human hypopharynx squamous carcinoma cells

  • Lee, Seul Ah;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.99-106
    • /
    • 2020
  • Ficus carica L. (fig) is one of the first cultivated crops and is as old as humans. This plant has been extensively used as a traditional medicine for treating diseases, such as cough, indigestion, nutritional anemia, and tuberculosis. However, the physiological activity of fig leaves on oral cancer is as yet unknown. In this study, we investigated the anticancer effect of methanol extracts of Ficus carica (MeFC) and the mechanism of cell death in human FaDu hypopharyngeal squamous carcinoma cells. MeFC decreased the viability of oral cancer (FaDu) cells but did not affect the viability of normal (L929) cells, as determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay and Live and Dead assay. In addition, MeFC induced apoptosis through the proteolytic cleavage of procaspase-3, -9, poly (ADP-ribose) polymerase (PARP), downregulation of Bcl-2, and upregulation of Bax, as determined by 4′,6-diamidino-2-phenylindole dihydrochloride staining and western blot analysis. Moreover, a concentration of MeFC without cytotoxicity (0.25 mg/mL) significantly suppressed colony formation, a hallmark of cancer development, and completely inhibited the colony formation at 1 mg/mL. Collectively, these results suggest that MeFC exhibits a potent anticancer effect by suppressing the growth of oral cancer cells and colony formation via caspase- and mitochondrial-dependent apoptotic pathways in FaDu human hypopharyngeal squamous carcinoma cells. Therefore, the methanol extract of Ficus carcica leaves provide a natural chemotherapeutic drug for human oral cancer.

Aloe vera Inhibits Proliferation of Human Breast and Cervical Cancer Cells and Acts Synergistically with Cisplatin

  • Hussain, Arif;Sharma, Chhavi;Khan, Saniyah;Shah, Kruti;Haque, Shafiul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2939-2946
    • /
    • 2015
  • Many of the anti-cancer agents currently used have an origin in natural sources including plants. Aloe vera is one such plant being studied extensively for its diverse health benefits, including cancer prevention. In this study, the cytotoxic potential of Aloe vera crude extract (ACE) alone or in combination with cisplatin in human breast (MCF-7) and cervical (HeLa) cancer cells was studied by cell viability assay, nuclear morphological examination and cell cycle analysis. Effects were correlated with modulation of expression of genes involved in cell cycle regulation, apoptosis and drug metabolism by RT-PCR. Exposure of cells to ACE resulted in considerable loss of cell viability in a dose- and time-dependent fashion, which was found to be mediated by through the apoptotic pathway as evidenced by changes in the nuclear morphology and the distribution of cells in the different phases of the cell cycle. Interestingly, ACE did not have any significant cytotoxicity towards normal cells, thus placing it in the category of safe chemopreventive agent. Further, the effects were correlated with the downregulation of cyclin D1, CYP 1A1, CYP 1A2 and increased expression of bax and p21 in MCF-7 and HeLa cells. In addition, low dose combination of ACE and cisplatin showed a combination index less than 1, indicating synergistic growth inhibition compared to the agents applied individually. In conclusion, these results signify that Aloe vera may be an effective anti-neoplastic agent to inhibit cancer cell growth and increase the therapeutic efficacy of conventional drugs like cispolatin. Thus promoting the development of plant-derived therapeutic agents appears warranted for novel cancer treatment strategies.

Mechanism Underlying Shikonin-induced Apoptosis and Cell Cycle Arrest on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line

  • Oh, Sang-Hun;Park, Sung-Jin;Yu, Su-Bin;Kim, Yong-Ho;Kim, In-Ryoung;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.40 no.1
    • /
    • pp.51-61
    • /
    • 2015
  • Shikonin, a major ingredient in the traditional Chinese herb Lithospermumerythrorhizon, exhibits multiple biological functions including antimicrobial, anti-inflammatory, and antitumor effects. It has recently been reported that shikonin displays antitumor properties in many cancers. This study was aimed to investigate whether shikonin could inhibit oral squamous carcinoma cell (OSCC) growth via mechanisms of apoptosis and cell cycle arrest. The effects of shikonin on the viability and growth of OSCC cell line, SCC25 cells were assessed by MTT assay and clonogenic assays, respectively. Hoechst staining and DNA electrophoresis indicated that the shikonin-treated SCC25 cells were undergoing apoptosis. Western blotting, immunocytochemistry, confocal microscopy, flow cytometry, MMP activity, and proteasome activity also supported the finding that shikonin induces apoptosis. Shikonin treatment of SCC25 cells resulted in a time- and dose-dependent decrease in cell viability, inhibition of cell growth, and increase in apoptotic cell death. The treated SCC25 cells showed several lines of apoptotic manifestation as follows: nuclear condensation; DNA fragmentation; reduced MMP and proteasome activity; decrease in DNA contents; release of cytochrome c into cytosol; translocation of AIF and DFF40 (CAD) onto the nuclei; a significant shift in Bax/Bcl-2 ratio; and activation of caspase-9, -7, -6, and -3, as well as PARP, lamin A/C, and DFF45 (ICAD). Shikonin treatment also resulted in down-regulation of the G1 cell cycle-related proteins and up-regulation of $p27^{KIP1}$. Taken together, our present findings demonstrate that shikonin strongly inhibits cell proliferation by modulating the expression of the G1 cell cycle-related proteins, and that it induces apoptosis via the proteasome, mitochondria, and caspase cascades in SCC25 cells.

Suppression of β-Secretase (BACE1) Activity and β-Amyloid Protein-Induced Neurotoxicity by Solvent Fractions from Petasites japonicus Leaves

  • Hong, Seung-Young;Park, In-Shik;Jun, Mi-Ra
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuronal loss and extracellular senile plaques containing $\beta$-amyloid peptide (A$\beta$). The deposition of the A$\beta$ peptide following proteolytic processing of amyloid precursor protein (APP) by $\beta$-secretase (BACE1) and $\gamma$-secretase is a critical feature in the progression of AD. Among the plant extracts tested, the ethanol extract of Petasites japonicus leaves showed novel protective effect on B103 neuroblastoma cells against neurotoxicity induced by A$\beta$, as well as a strong suppressive effect on BACE1 activity. Ethanol extracts of P. japonicus leaves were sequentially extracted with methylene chloride, ethyl acetate and butanol and evaluated for potential to inhibit BACE1, as well as to suppress A$\beta$-induced neurotoxicity. Exposure to A$\beta$ significantly reduced cell viability and increased apoptotic cell death. However, pretreatment with ethyl acetate fraction of P. japonicus leaves prior to A$\beta$ (50 ${\mu}M$) significantly increased cell viability (p<0.01). In parallel, cell apoptosis triggered by A$\beta$ was also dramatically inhibited by ethyl acetate fraction of P. japonicus leaves. Moreover, the ethyl acetate fraction suppressed caspase-3 activity to the basal level at 30 ppm. Taken together, these results demonstrated that P. japonicus leaves appear to be a useful source for the inhibition and/or prevention of AD by suppression of BACE1 activity and attenuation of A$\beta$ induced neurocytotoxicity.

Protective effect of furosin isolated from Euphorbia helioscopia against glutamate-induced HT22 cell death (등대(燈臺)풀 유래 Furosin의 glutamate에 의한 HT22 세포 사멸 억제 효과)

  • Baek, Ji Yun;Song, Ji Hoon;Choi, Sung Youl
    • The Journal of Korean Medicine
    • /
    • v.39 no.1
    • /
    • pp.35-43
    • /
    • 2018
  • Objectives: In the brain, glutamate is the most important excitable neurotransmitter in physiological and pathological conditions. However, the high level of glutamate induces neuronal cell death due to exitotoxicity and oxidative stress. The present study investigated to evaluate a possible neuroprotective effect of furosin isolated from Euphorbia helioscopia against glutamate-induced HT22 cell death. Methods: Furosin was isolated from methanol extract of Euphorbia helioscopia and examined whether it protects glutamate-induced neuronal cell death. The cell viability was determined using Ez-Cytox assay. Anti-oxidative effect of furosin was determined by DPPH scavenging activities, and the levels of intracellular reactive oxygen species (ROS) were determined by the fluorescent intensity after staining the cells with $H_2DCFDA$. To evaluate apoptotic cell death, we performed nuclear staining and image-based cytometeric analysis. Results: The cell viability was significantly increased by treatement with furosin compared with the treatment with glutamate. Furosin showed a strong DPPH radical scavenging activity ($EC50=1.83{\mu}M$) and prevented the accumulation of intra cellular ROS. Finally, the presence of 50 and $100{\mu}M$ furosin significantly the percentage of apoptotic cells compared with glutamate treatment. Conclusion: The present study found that furosin is a potent neuroprotectant against glutamate-induced oxidative stress through inhibition of apoptotic cell death induced by glutamate. Therefore, the present study suggests that furosin as a bioactive compound of E. helioscopia can be a useful source to develop a drug for the treatment of neurodegenerative diseases and acute brain injuries.