• Title/Summary/Keyword: viability decrease

Search Result 514, Processing Time 0.04 seconds

Evaluation of Boldine Activity against Intracellular Amastigotes of Leishmania amazonensis

  • Salama, Isabel Cristina;Arrais-Lima, Cristina;Arrais-Silva, Wagner Welber
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.3
    • /
    • pp.337-340
    • /
    • 2017
  • Leishmaniasis is a neglected and endemic disease that affects poorest population mainly in developing countries. A lack of adequate and definitive chemotherapeutic agents to fight against this infection has led to the investigation of numerous compounds. The aim of this study was to investigate in vitro activity of boldine against Leishmania amazonensis murine cell infection. Boldine ((S)-2,9-dihydroxy-1,10-dimethoxy-aporphine) is an aporphine alkaloid found abundantly in the leaves/bark of boldo (Peumus boldus Molina), a widely distributed tree native to Chile. The in vitro system consisted of murine macrophage infection with amastigotes of L. amazonensis treated with different concentrations from 50 to $600{\mu}g/ml$ of boldine for 24 hr. Intracellular parasite destruction was assessed by morphological examination and boldine cytotoxicity to macrophages was tested by the MTT viability assay. When cells were treated with $100{\mu}g/ml$ of boldine the reduction of parasite infection was 81% compared with untreated cultures cells. Interestingly, boldine-treatment caused a concentration-dependent decrease of macrophage infection that culminated with 96% of reduction when cells were submitted to $600{\mu}g/ml$ of boldine. Cell cultures exposed to $100{\mu}g/ml$ of boldine and $300{\mu}g/ml$ of $Glucantime^{(R)}$ during 24 hr showed a significant reduction of 50% in parasitized cells compared with cell cultures exposed just to $Glucantime^{(R)}$. The study showed that treatment with boldine produces a better effect than treatment with the reference antimonial drug, glucantime, in L. amazonensis infected macrophage. Our results suggest that boldine is a potentially useful agent for the treatment of leishmaniasis.

Protective Effect of PineXol® on Hydrogen Peroxide-induced Apoptosis on SK-N-MC Cells and Focal Ischemia Rodent Models (파인엑솔이 과산화수소로 유도된 SK-N-MC 세포와 뇌졸중 백서 모델에서의 보호효과)

  • Hong, Soon-O;Han, Kyung-Hoon;Lee, Seung-Hee;Kim, Doh-Hee;Song, Kwan-Young;Han, Sung-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.923-929
    • /
    • 2016
  • The purpose of this study was to evaluate the protective effect of $PineXol^{(R)}$ on $H_2O_2$-induced cell death in SK-N-MC cells, and in early stage focal ischemia rodent model. SK-N-MC cells were pre-treated with $200{\mu}M$ $H_2O_2$ or various concentrations of $PineXol^{(R)}$ (10, 30, and 50 pg/mL) for 24 h, and then exposed to $H_2O_2$ for 3 h. Cell death was assessed by the CCK-8 assay, reactive oxygen species (ROS) assay, and lactate and dehydrogenase (LDH) release assay. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) expressions were also analyzed by western blotting. Focal ischemia rodent model was used as the in vivo model, and different concentrations of $PineXol^{(R)}$ (1, 10, and 100 mg/kg) were administered. One week after administration, reduction of infarct volume was analyzed by TTC staining. Cell viability of $H_2O_2$-treated SK-N-MC cells significantly increased by pre-treatment of $PineXol^{(R)}$ (p<0.05). $PineXol^{(R)}$ pre-treatment also induced significant decrease of ROS and LDH expressions. However, $PineXol^{(R)}$ did not affect the infarct volume. These results suggest that $PineXol^{(R)}$ has significant neuroprotective effect in vitro, but statistical significance was not confirmed in the in vivo focal ischemia model.

Processed Panax ginseng, Sun Ginseng, Decreases Oxidative Damage Induced by tert-butyl Hydroperoxide via Regulation of Antioxidant Enzyme and Anti-apoptotic Molecules in HepG2 Cells

  • Lee, Hye-Jin;Kim, Jin-Hee;Lee, Seo-Young;Park, Jeong-Hill;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.248-255
    • /
    • 2012
  • Potential antioxidant effect of processed ginseng (sun ginseng, SG) on oxidative stress generated by tert-butyl hydroperoxide (t-BHP) was investigated in HepG2 cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and lactate dehydrogenase (LDH) leakage test demonstrated that SG dose-dependently prevents a loss of cell viability against t-BHP-induced oxidative stress. Also, SG treatment dose-dependently relieved the increment of activities of hepatic enzymes, such as aspartate aminotrasferase and alanine aminotransferase, and lipid peroxidation mediated by t-BHP treatment in HepG2 cells. SG increased the gene expression of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. However, high dose of SG treatment caused decrease in mRNA level of glutathione peroxidase as compared to low dosage of SG-treated cells. The gene expression of glutathione reductase was found to be slightly increased by SG treatment. In addition, SG extract attributed its hepaprotective effect by inducing the mRNA level of bcl-2 and bcl-xL but reducing that of bax. But, the gene expression of bad showed no significant change in SG-treated HepG2 cells. These findings suggest that SG has hepatoprotective effect by showing reduction of LDH release, activities of hepatic enzymes and lipid peroxidation and regulating the gene expression of antioxidant enzymes and apoptosis-related molecules against oxdative stress caused by t-BHP in HepG2 cells.

Effects of Scrophulariae Radix (SR) on Allergic Contact Dermatitis (ACD) induced by DNCB in mice (현삼이 DNCB로 유발된 알레르기성 접촉성 피부염에 미치는 영향)

  • Song, Jin-Soo;Lee, Jong-Cheol;Choi, Jung-Hwa;Kim, Jong-Han;Park, Soo-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.24 no.3
    • /
    • pp.1-16
    • /
    • 2011
  • Objective : In the theory of Korean medicine, Scrophulariae Radix (SR) can clear away heat and cool the blood, nourish yin and promote the production of the body fluids, relieve toxin and benefit the throat. The present study was carried out to investigate effects of SR on allergic contact dermatitis (ACD) induced by 2,4-dinitrochlorobenzene (DNCB) in mice. Methods : In this experiment, effects of SR on clinical aspects on the skin, histopathological changes such as spongiosis, mast cell distribution, immune cell infiltration in tissue, spleen / body ratio and production levels of serum cytokines were investigated in vivo. In addition, effects on cell viability and release of b-hexosaminidase and histamine were also investigated in vitro. Results : SR treatment diminished erythema, desquamation and keratosis which were induced by repeated painting of DNCB. Spongiosis and edema were diminished by painting of SR in histopathological observation, infiltrations of mast cell and monocytes were also decreased in SR group. In addition, spleen / body ratio was lowered compared to ADC control group. Production level of IFN-${\gamma}$ in serum was decreased, but level of IL-4 did not affected by SR. Finally, more than 400 ${\mu}g/ml$ of SR treatment groups showed decreased cell viabilities in RBL-2H3 cells. Treatment with over 200 ${\mu}g/ml$ of SR decreased b-hexosaminidase release, and treatment with over 400 ${\mu}g/ml$ decreased histamine release in vitro. Conclusion : these data suggest that SR can decrease symptoms of ACD, then SR is useful to treat patient with ACD.

Safety evaluation of bacteriophages for application as sanitizers (박테리오파지의 살균소독제 응용을 위한 안전성 평가)

  • Park, Do-Won;Lee, Young-Duck;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.109-112
    • /
    • 2020
  • To evaluate the safety of bacteriophages for application of sanitizer, endotoxin content and cell cytotoxicity of two Escherichia coli and four Staphylococcus aureus phages were determined. Endotoxin ratio was determined by the Limulus amebocyte lysate (LAL) assay as a test for representative biological endotoxin content. The average endotoxin average content of the 9 log PFU/mL lysate was 18.6 EU/mL and that of the 10 log PFU/mL lysate was 5.9 EU/mL, suggesting that the phage lysate was not suitable for clinical applications, but suitable for food pathogen control applications. To confirm the cell cytotoxicity of the phage lysates, MTT assay was performed using Raw 264.7 cells treated with 9 log PFU/mL phages. Results of the assay indicated that the phage lysates did not significantly decrease the cell viability (p>0.05). These results indicated that bacteriophages would be suitable as a food safety sanitizer.

Inhibitory Effects of Ethanol Extracts of Some Korean Plants on Ultraviolet B-Induced DNA Damage (HaCaT 세포에서 자외선 B에 의해 유도되는 DNA 상해에 대한 국내 수종 자생 식물 에탄올 추출물의 저해효과)

  • Lee, Seok Hee;Ha, Se Eun;Cho, Hyoung Kwon;Park, Jong Kun
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.5
    • /
    • pp.845-850
    • /
    • 2014
  • In the present study, the effects of extracts from Korean plants on the DNA damage response in HaCaT cells exposed to ultraviolet B (UVB) were investigated. The activity of cells treated for 24 hr with ethanol extracts from Vaccinium spp. (VS), and Vitis vinifera L (VV) alone was similar to that of the non-treated control, but gradually decreased at concentrations above $200{\mu}g/mL$. However, when post-incubation of UVB-exposed cells was carried out for 24 hr in medium containing VS or VV extracts, the cell activity increased in a concentration-dependent manner compared with that in the normal growth medium. The cell viability of UVB-exposed cells also increased when post-incubated in medium containing VS or VV extracts, in a concentration-dependent manner. Nuclear fragmentation analysis showed that post-incubation with VS or VV extracts decreased the UVB-induced apoptosis by about 10 and 13%, respectively, of that in cells post-incubated in growth medium. After 24 hr of post-incubation in medium containing VS or VV extracts, the level of CPD and 8-OHdG decreased in time- and concentration-dependent manners. Overall these results suggest that VS and VV extracts assist the survival of UVB-exposed cells, in accordance with the respective decrease in the levels of UVB-induced DNA damage.

Fucoidan Protects LLC-PK1 Cells against AAPH-induced Damage

  • Park, Min-Jung;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.259-265
    • /
    • 2008
  • This study was designed to investigate the protective effect of fucoidan against AAPH-induced oxidative stress in LLC-PK1 cells (porcine kidney epithelial cells). Oxidative stress was induced by exposing of LLC-PK1 cells to the 1 mM 2,2'-azobis(2-amidino propane) dihydrochloride (AAPH) for 24 hr. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in a significant (p<0.05) decrease in cell viability, but fucoidan treatment protected LLC-PK1 cells from AAPH-induced cell damage in a dose dependant manner. To investigate the protective action of fucoidan against AAPH-induced damage of LLC-PK1 cells, we measured the effects of fucoidan on lipid peroxidation and antioxidant enzymes activities of AAPH treated cells as well as scavenging activities on superoxide anion radical and hydroxyl radical. Fucoidan had protective effect against the AAPH-induced LLC-PK1 cellular damage and decreased lipid peroxidation and increased activities of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-px). Furthermore, fucoidan showed strong scavenging activity against superoxide anion radical. The $IC_{50}$ value of fucoidan was $48.37{\pm}1.54\;{\mu}g/mL$ for superoxide anion radical scavenging activity. The fucoidan also had high hydroxyl radical scavenging activity ($IC_{50}=32.03\;{\mu}g/mL$). These results indicate that fucoidan protects against AAPH-induced LLC-PK1 cell damage by inhibiting lipid peroxidation, increasing antioxidant enzyme activities and scavenging offree radicals.

Radical Intermediate Generation and Cell Cycle Arrest by an Aqueous Extract of Thunbergia Laurifolia Linn. in Human Breast Cancer Cells

  • Jetawattana, Suwimol;Boonsirichai, Kanokporn;Charoen, Savapong;Martin, Sean M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4357-4361
    • /
    • 2015
  • Thunbergia Laurifolia Linn. (TL) is one of the most familiar plants in Thai traditional medicine that is used to treat various conditions, including cancer. However, the antitumor activity of TL or its constituents has never been reported at the molecular level to support the folklore claim. The present study was designed to investigate the antitumor effect of an aqueous extract of TL in human breast cancer cells and the possible mechanism(s) of action. An aqueous crude extract was prepared from dried leaves of TL. Folin-Ciocalteu colorimetric assays were used to determine the total phenolic content. Antiproliferative and cell cycle effects were evaluated in human breast adenocarcinoma MCF-7 cells by MTT reduction assay, cell growth inhibition, clonogenic cell survival, and flow cytometric analysis. Free radical generation by the extracts was detected using electron paramagnetic resonance spectroscopy. The exposure of human breast adenocarcinoma MCF-7 cells to a TL aqueous extract resulted in decreases in cell growth, clonogenic cell survival, and cell viability in a concentration-dependent manner with an $IC_{50}$ value of $843{\mu}g/ml$. Treatments with extract for 24h at $250{\mu}g/ml$ or higher induced cell cycle arrest as indicated by a significant increase of cell population in the G1 phase and a significant decrease in the S phase of the cell cycle. The capability of the aqueous extract to generate radical intermediates was observed at both high pH and near-neutral pH conditions. The findings suggest the antitumor bioactivities of TL against selected breast cancer cells may be due to induction of a G1 cell cycle arrest. Cytotoxicity and cell cycle perturbation that are associated with a high concentration of the extract could be in part explained by the total phenolic contents in the extract and the capacity to generate radical intermediates to modulate cellular proliferative signals.

Radioprotective effects of delphinidin on normal human lung cells against proton beam exposure

  • Kim, Hyun Mi;Kim, Suk Hee;Kang, Bo Sun
    • Nutrition Research and Practice
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Exposure of the normal lung tissue around the cancerous tumor during radiotherapy causes serious side effects such as pneumonitis and pulmonary fibrosis. Radioprotectors used during cancer radiotherapy could protect the patient from side effects induced by radiation injury of the normal tissue. Delphinidin has strong antioxidant properties, and it works as the driving force of a radioprotective effect by scavenging radiation-induced reactive oxygen species (ROS). However, no studies have been conducted on the radioprotective effect of delphinidin against high linear energy transfer radiation. Therefore, this study was undertaken to evaluate the radioprotective effects of delphinidin on human lung cells against a proton beam. MATERIALS/METHODS: Normal human lung cells (HEL 299 cells) were used for in vitro experiments. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay assessed the cytotoxicity of delphinidin and cell viability. The expression of radiation induced cellular ROS was measured by the 2'-7'-dicholordihydrofluorescein diacetate assay. Superoxide dismutase activity assay and catalase activity assay were used for evaluating the activity of corresponding enzymes. In addition, radioprotective effects on DNA damage-induced cellular apoptosis were evaluated by Western blot assay. RESULTS: Experimental analysis, including cell survival assay, MTT assay, and Western blot assay, revealed the radioprotective effects of delphinidin. These include restoring the activities of antioxidant enzymes of damaged cells, increase in the levels of pro-survival protein, and decrease of pro-apoptosis proteins. The results from different experiments were compatible with each to provide a substantial conclusion. CONCLUSION: Low concentration ($2.5{\mu}M/mL$) of delphinidin administration prior to radiation exposure was radioprotective against a low dose of proton beam exposure. Hence, delphinidin is a promising shielding agent against radiation, protecting the normal tissues around a cancerous tumor, which are unintentionally exposed to low doses of radiation during proton therapy.

Effects of Polygalae Radix on Apotosis in PC-12 Cell (원지(遠志)물추출물이 Apoptosis에 미치는 효과)

  • Lee, Sang-Chul;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.59-65
    • /
    • 2015
  • Objectives : The purpose of this study was to observe the effects of Polygalae Radix(PR) on 4-HNE-induced apoptosis in PC-12 cell. Methods : A MTT assay was conducted to observe the cytotoxicity of Polygalae Radix on the cell viability and the cytoprotective effect of Polygalae Radix against 4-HNE that causes oxidative stress-induced cytotoxicity, and then a western blot was conducted to observe the expression of $TNF-{\alpha}$, caspase-3, Bax and Bcl-2 protein that are important factors involved with apoptosis signaling pathway. Results : The Polygalae Radix water extract $25{\mu}g$, $50{\mu}g$, $100{\mu}g$ and $200{\mu}g/mL$ had no cytotoxicity on the PC-12 cell. The Polygalae Radix water extract $25{\mu}g$, $50{\mu}g$ and $100{\mu}g/mL$ had the cytoprotective effect against 4-HNE that causes cytotoxicity on the PC-12 cell. The Polygalae Radix water extract $50{\mu}g/mL$ significantly suppressed the increase in $TNF-{\alpha}$ protein expression in PC-12 cell. The Polygalae Radix water extract $25{\mu}g$ and $50{\mu}g/mL$ significantly suppressed the increase in caspase-3 protein expression in PC-12 cell. The Polygalae Radix water extract $25{\mu}g$, $50{\mu}g$ and $100{\mu}g/mL$ suppressed the increase in Bax protein expression in PC-12 cell but had no significance. The Polygalae Radix water extract $25{\mu}g$ and $100{\mu}g/mL$ significantly prevented the decrease in Bcl-2 protein expression in PC-12 cell, Conclusions : These results suggest that the Polygalae Radix water extract is effective in inhibiting apoptosis.