• 제목/요약/키워드: vestibular neuron

검색결과 11건 처리시간 0.025초

평류전정자극에 의한 H 반사의 변화 (The Change of H Reflex by Galvanic Vestibular Stimulation)

  • 황태연;김태열;박장성
    • 대한임상전기생리학회지
    • /
    • 제2권3호
    • /
    • pp.65-73
    • /
    • 2004
  • In experimental method, this study was that galvanic vestibular stimulation in vestibular system influenced the excitability of spinal neuron through. H-reflex was measured by galvanic vestibular stimulation of binaural(right-negative pole and left-positive pole) at left head turning and prone position in sixteen normal subjects in their twenties age were selected. The summary of the comparison results were obtained below. 1. In the change of H reflex according to galvanic vestibular stimulation(GVS), Hmax amplitude(p<.05) increased significantly after stimulation. 2. In the change of H reflex according to galvanic vestibular stimulation(GVS), Hmax/Mmax ratio(p<.05) increased significantly after stimulation. In the conclusion, galvanic vestibular stimulation influenced the excitability of vestibulospinal tract and spinal neuron.

  • PDF

Effects of Sphingosine-1-phosphate on Vestibular Nuclear Neurons

  • ;;;;박종성
    • 대한의생명과학회지
    • /
    • 제16권1호
    • /
    • pp.46-52
    • /
    • 2010
  • This study was designed to investigate the effects of sphingosine-1-phosphate on the neuronal activity of rat medial vestibular nuclear neurons. Sprague-Dawley rats aged 14 to 16 days were decapitated under ether anesthesia. After treatment with pronase and thermolysin, the dissociated medial vestibular nuclear neurons were transferred into a chamber on an inverted microscope. Spontaneous action potentials and potassium currents were recorded by standard patch-clamp techniques under current and voltage-clamp modes respectively. 15 medial vestibular nuclear neurons revealed excitatory responses to 1 and $5\;{\mu}M$ of sphingosine-1-phosphate. The spike frequency and resting membrane potential of these cells were increased by sphingosine-1-phosphate. The amplitude of afterhyperpolarization was decreased by sphingosine-1-phosphate. Whole potassium currents of medial vestibular nuclear neurons were decreased by sphingosine-1-phosphate (n=12). Sphingosine-1-phosphate did not affect the charybdotoxin-treated potassium currents. These experimental results suggest that sphingosine-1-phosphate increases the neuronal activity of the medial vestibular nuclear neurons by altering the resting membrane potential and afterhyperpolarization.

Effects of Phenylephrine on the Excitability of Medial Vestibular Nuclear Neurons in Rats

  • Jeong, Han-Seong;Huh, Hae-Ryong;Jang, Myung-Joo;Hong, Seol-Hee;Jang, Su-Jeong;Park, Jin;Lee, Seung-Han;Kim, Jae-Ha;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권3호
    • /
    • pp.131-135
    • /
    • 2006
  • Coeruleo-vestibular pathway which connects locus coeruleus and vestibular nuclei is noradrenergic. This study was designed to elucidate the effects of phenylephrine on the spontaneous activity of acutely isolated medial vestibular nuclear neurons of rat by whole-cell patch-clamp technique. Sprague-Dawley rats, aged 14 to 16 days, were used. After enzymatic digestion, dissociated medial vestibular neurons were transferred to a recording chamber mounted on an inverted microscope, and spontaneous action potentials were recorded by standard patch-clamp techniques. In current-clamp mode, the frequency of spontaneous action potential of medial vestibular nuclear neurons was decreased by phenylephrine (n=15). Phenylephrine increased the amplitude of afterhyperpolarization without changes in the resting membrane potential and spike width. In voltage-clamp mode, the whole potassium currents of the medial vestibular nuclear neurons were increased by phenylephrine (n=12). These experimental results suggest that ${\alpha}-receptor$ mediates the inhibitory effects on the neuronal activity of the medial vestibular nuclear neuron.

Effects of a ${\delta}-opioid$ Agonist on the Brainstem Vestibular Nuclear Neuronal Activity of Rats

  • Kim, Tae-Sun;Huang, Mei;Jang, Myung-Joo;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권3호
    • /
    • pp.137-141
    • /
    • 2005
  • This study was undertaken to investigate the effects of [$D-Ala^2$, D-Leu^5$]-enkephalin (DADLE) on the spontaneous activity of medial vestibular nuclear neurons of the rat. Sprague-Dawley rats, aged 14 to 16 days, were anesthetized with ether and decapitated. After enzymatic digestion, the brain stem portion of medial vestibular nuclear neuron was obtained by micropunching. The dissociated neurons were transferred to a recording chamber mounted on an inverted microscope, and spontaneous action potentials were recorded by standard patch-clamp techniques. The spontaneous action potentials were increased by DADLE in 12 cells and decreased in 3 cells. The spike frequency and resting membrane potential of these cells were increased by DADLE. The depth of afterhyperpolarization was not affected by DADLE. The potassium currents were decreased in 20 cells and increased in 5 cells. These results suggest that DADLE increases the neuronal activity of the medial vestibular nuclear neurons by altering resting membrane potential.

Correlation Between Electrical Activity of Type I Neuron and c-Fos Expression in the Medial Vestibular Nuclei Following Unilateral Labyrinthectomy in Rats

  • Park, Byung-Rim;Doh, Nam-Yong;Kim, Min-Sun;Chun, Sang-Woo;Lee, Moon-Young;Lee, Sung-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권5호
    • /
    • pp.505-513
    • /
    • 1997
  • To search the correlations between electrical activity and c-Fos expression in the process of vestibular compensation, we examined the changes of those two parameters in the medial vestibular nuclei (MVN) of unilaterally labyrinthectomized (ULX) rats. Spontaneous nystagmus with fast component toward the intact side disappeared gradually within 48 hours. Fourty eight hours after ULX, directional preponderance of the eye movement induced by sinusoidal rotation of the whole body which represents the symmetry of bilateral vestibular functions showed less than 20% by rotation of 0.1, 0.2, and 0.5 Hz, indicating the recovery of symmetry in bilateral vestibular functions. Six hours after ULX, spontaneous electrical activity of type I neurons resulted in asymmetry between bilateral MVN, however, the asymmetry of the electrical activity was decreased 48 hours after ULX. Immunocytochemical staining revealed that ULX produced dramatic induction of c-Fos positive cells in the MVN bilaterally. The number of c-Fos immunoreactive cells in the contralateral MVN was significantly higher than those in the ipsilateral MVN (p<0.0001) 2 hours after ULX. Thereafter, the number of c-Fos positive cells decreased bilaterally and was slightly, but not significantly higher in the ipsilateral MVN at 48 hours after ULX. The present results suggest that both electrical activity of type I neurons and c-Fos expression in MVN following ULX will reflect underlying mechanisms of recovery process of vestibular compensation.

  • PDF

흰쥐의 내측 전정신경핵 흥분성에 대한 전침자극의 효과 (Effects of Electroacupuncture on the excitability in Medial Vestibular Nuclei of Rats)

  • 김재효;이성호;손인철;김영선;김민선
    • Korean Journal of Acupuncture
    • /
    • 제26권3호
    • /
    • pp.27-42
    • /
    • 2009
  • Objectives : The vestibular system detects head movement and serve to regulate and maintain the equilibrium and orientation of the body. It is known that the vestibular imbalance leads to vestibular symptoms such as nausea, vomiting, vertigo and postural disturbance. The objectives of the present study were to examine a modification of the dynamic activities of medial vestibular nucleus (MVN) neurons following electroacupuncture (EA) of GB43 (Hyepgye). Methods : In Sprague-Dawley rats weighing $250{\sim}300g$, dynamic responses induced by sinusoidal whole body rotation about vertical axis at 0.2 Hz were observed in MVN of rats during EA of GB43 (Hyepgye) with 0.2 ms, 40 Hz and $600{\pm}200{\mu}A$. Also, expression of cFos protein was observed 2 hours after EA for 30 mins. Results : In dynamic response of vestibular neuron, the excitatory or inhibitory responses of gain were predominant in the ipsilateral MVN neurons during EA but not predominant in the contralateral MVN. Most neurons showing decreased gain were classified to inhibitory responses of spontaneous firing discharge during EA and ones showing increased gain were classified to excitatory response of spontaneous firing discharge during EA. Also, EA of the left GB43 (Hyepgye) for 30 mins produced the expression of cFos protein in MVN, inferior olive (IO) and solitary tract nuclei (SOL). Spatial expressions of cFos protein were predominant in the contralateral MVN, ipsilateral IO and bilateral SOL. Conclusion : These results suggest that the excitability of MVN neurons was influenced by EA of GB43 (Hyepgye) and EA may be related to the convergence on MVN.

  • PDF

Roles of $Ca^{2+}-Activated\;K^+$ Conductances on Spontaneous Firing Patterns of Isolated Rat Medial Vestibular Nucleus Neurons

  • Chun, Sang-Woo;Jun, Jae-Woo;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2000
  • To investigate the contributions of intrinsic membrane properties to the spontaneous activity of medial vestibular nucleus (MVN) neurons, we assessed the effects of blocking large and small calcium-activated potassium channels by means of patch clamp recordings. Almost all the MVN neurons recorded in neonatal $(P13{\sim}P17)$ rat were shown to have either a single deep after-hyperpolarization (AHP; type A cells), or an early fast and a delayed slow AHP (type B cells). Among the recorded MVN cells, immature action potential shapes were found. Immature type A cell showed single uniform AHP and immature B cell showed a lack of the early fast AHP, and the delayed AHP was separated from the repolarization phase of the spike by a period of isopotentiality. Application of apamin and charybdotoxin (CTX), which selectively block the small and large calcium-activated potassium channels, respectively, resulted in significant changes in spontaneous firings. In both type A and type B cells, CTX (20 nM) resulted in a significant increase in spike frequency but did not induce bursting activity. By contrast, apamin (300 nM) selectively abolished the delayed slow AHP and induced bursting activity in type B cells. Apamin had no effect on the spike frequency of type A cells. These data suggest that there are differential roles of apamin and CTX sensitive potassium conductances in spontaneous firing patterns of MVN neurons, and these conductances are important in regulating the intrinsic rhythmicity and excitability.

  • PDF

Effects of [D-$Pen^2$, D-$Pen^5$]-enkephalin on the Neuronal Activity of Medial Vestibular Nuclear Neurons

  • Jang, Su-Jeong;Jeong, Han-Seong;Park, Jong-Seong
    • 대한의생명과학회지
    • /
    • 제15권3호
    • /
    • pp.199-205
    • /
    • 2009
  • This study was designed to investigate direct effects of [D-$Pen^2$, D-$Pen^5$]-enkephalin, a $\delta$-opioid receptor agonist on the neuronal activity of medial vestibular nuclear (MVN) neurons by whole-cell configuration patch clamp experiments. The spike frequency of MVN neuron was increased to $9.50{\pm}0.55$ (P<0.05) and $10.56{\pm}0.66$ (P<0.05) by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin from the control level of $8.05{\pm}0.55$ spikes/sec, respectively (n=18). The resting membrane potential of the neurons was increased to $-37.86{\pm}0.92$ and $-36.97{\pm}0.97$ (P<0.05) from $-38.74{\pm}1.13\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. The amplitude of afterhyperpolarization was decreased to $23.78{\pm}0.65$ and $21.67{\pm}0.89$ (P<0.05) from $23.73{\pm}0.53\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. The spike width was changed to $2.22{\pm}0.08$ and $2.24{\pm}0.07$ from $2.20{\pm}0.08\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. After pretreatment of naltrindole, a highly selective 8-opioid receptor antagonist, [D-$Pen^2$, D-$Pen^5$]-enkephalin did not change firing rate, resting membrane potential, afterhyperpolarization amplitude, and spike width of MVN neurons. The above experimental results suggest that [D-$Pen^2$, D-$Pen^5$]-enkephalin increases the neuronal activity of MVN neurons via inhibition of calcium-dependent potassium currents underlying the afterhyperpolarization.

  • PDF

배양전정신경세포에 있어서 5-Fluorouracil의 세포독성에 대한 산조인의 효과 (Effect of Ziziphi Jujubae Semen on 5-Fluorouracil Induced cytotoxicity in Cultured Vestibular Neurons)

  • 손일홍;이정헌;최유선;이재규;김형수;이용석;이환봉;최기욱;민부기;김상수;이강창;류명환;송호준
    • 동의생리병리학회지
    • /
    • 제16권1호
    • /
    • pp.146-149
    • /
    • 2002
  • To evaluate the protective effect of Ziziphi Jujubae Semen(ZJS) on 5-Fluorouracil(5-Fu) in cultured vestibular neurons(VN), neurotoxicity was assessed by XTT assay after VN was exposed to 3-24ug/ml 5-Fu for 48 hours. and also, the neuroprotective effect of ZJS was measured by XTT assay in these cultrures. Cell viability was remarkably decreased dose-dependently, after the treatment with 12ug/ml 5-Fu to cultured VN for 48 hours. In the neuroprotective effect of ZJS on the toxicity induced by 5-Fu, ZJS prevented the neurotoxicity induced by 5-Fu in these cultures. From above the results, it suggests that 5-Fu is toxic in cultured VN and herb extract, ZJS has protective effect over the neurotoxicity induced by 5-Fu.

GPR88 효현제의 전처리에 의한 뇌졸중후 뇌손상 감소효과 연구 (Pretreatment with GPR88 Agonist Attenuates Postischemic Brain Injury in a Stroke Mouse Model)

  • 이서연;박정화;김민재;최병태;신화경
    • 생명과학회지
    • /
    • 제30권11호
    • /
    • pp.939-946
    • /
    • 2020
  • 뇌졸중은 전 세계적으로 신경계 장애를 일으키는 주요 원인 중 하나이며, 뇌졸중 환자는 다양한 운동, 인지 및 정신 장애를 나타낸다. GPR88은 orphan G protein coupled receptor이며 striatal medium spiny neurons에서 높게 발현이 되며, GPR88이 결손이 된 경우 motor coordination과 motor learning에 문제가 발생하게 된다. 본 연구에서는 Western blot 및 real-time PCR을 사용하여 허혈성 마우스 모델에서 GPR88 발현이 감소함을 발견 하였다. 또한, 뇌에서 유래한 세 가지 유형의 세포들, 뇌혈관내피세포(brain microvascular endothelial cells), 미세 아교세포(microglial cells) 및 신경 세포들에서 GPR88의 발현정도를 확인한 결과, HT22 신경 세포에서 GPR88의 발현이 가장 높음을 관찰하였고, 뇌졸중과 유사한 실험조건인 oxygen glucose deprivation (OGD) 조건에 배양한 HT22 신경세포에서 GPR88의 발현이 감소하였다. 또한 GPR88 효현제인 RTI-13951-33 (10 mg/kg)을 전처리후에 뇌허혈을 유발하였을 때, infarct volume의 감소, vestibular-motor function 및 neurological score의 개선효과를 관찰할 수 있었다. 이러한 결과는 GPR88이 허혈성 뇌졸중을 포함한 CNS 질환의 치료를 위한 잠재적인 약물표적이 될 수 있음을 제시한다.