• 제목/요약/키워드: vessel pressure

검색결과 1,358건 처리시간 0.031초

Procedure of Pressure/Temperature Curves Generation for Brittle Fracture Prevention of Reactor Vessel

  • Park, M. K.;Kim, Y. J.;Kim, J. M.;Jheon, J. H.;Kim, I. K.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(3)
    • /
    • pp.290-295
    • /
    • 1996
  • The purpose of this study is to establish the pressure/temperature curves of Reactor Coolant System for brittle fracture prevention. The pressure/temperature curve is the basis to select RC Pump and limits to operate the plant. Based on the plant operation experience, this curve should be re-generated periodically in order to ensure the structural integrity using data from the test of reactor vessel surveilance materials to compensate for the irradiation effects. This study provides the procedure of pressure/temperature curve generation in term of brittle fracture prevention of reactor vessel. Using the UCN 3&4 data, the sample pressure/temperature curve was generated, and it was compared with those of YGN 3&4 based on the stress and $RT_{NDT}$value.

  • PDF

격납용기내에서 분무형 나트륨화재 현상 해석 (Analysis of spray sodium fire phenomena in the containment vessel)

  • 조병렬;권선길;황성태
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.79-88
    • /
    • 1996
  • A hypothetical accident in the containment vessel of liquid metal reactor could cause a pressure, temperature rise, and a strong aerosol release. The computer codes relating to the modelization of these accident make it necessary to use various input parameter, among which is the dynamic shape factor of aerosols produced. Combustion experiments of sodium spray fire carried out in a closed vessel, which was vertical cylinder made of 1.2m in diameter and 1.8m hight with a volume of 1.7$m^3$. The results of theoretical analysis presented here was compared to data obtained from experiments. The experimental results were summarized as follows. 1) The aerodynamic diameter and geometric diameter of aerosols are decreasing with increasing of injection pressure and injection temperature of sodium 2) The dynamic shape factor of aerosol is proportional to the aerodynamic diameter for a given particle. 3) The correspondence between the aerodynamic diameter and geometric diameter can be as $D_{ae}=0.70 D_{ge}$. 4) Peak pressure rose with increase in pressure and temperature of injection sodium, being more sensitive to the injection pressure than the injection temperature.

  • PDF

Autofrettage effects on strength and deformation of fiber reinforced pressure vessel

  • Wang, X.;Chen, X.
    • Structural Engineering and Mechanics
    • /
    • 제27권3호
    • /
    • pp.277-292
    • /
    • 2007
  • Based on the composite finite element simulation and a series of hydrostatic pressure and burst tests, autofrettage effects on strength and deformation of fiber reinforced pressure vessel with metallic liners have been studied in the paper (autofrettage: during the course of one pressure taking effect, the increasing internal stress in metallic liner can surpass the yielding point and the plastic deformation will happen, which result in that when there is no internal pressure, there are press stress in liner while tensile stress in fiber lamination). By making use of a composite finite element Ansys code and a series of experiments, the autofrettage pressure is determined in order to make the aluminium liner be totally in elastic state, under given hydrostatic test pressure. The stress intensity factors of the longitudinal crack in aluminum liner end under internal pressure and thermal loads have been computed and analyzed before and after the autofrettage processing. Through numerical calculation and experiment investigations, it is found that a correct choice for autofrettage pressure can improve the gas-tightness and fatigue strength of FRP vessel.

100L-700MPa급 초고압 용기 설계 기술 개발 (Development of Design Method on High Pressure Vessel of 100L-700MPa Grade)

  • 박보규;이호준;이인준;박시우;조규상
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.67-73
    • /
    • 2019
  • An ultra-high pressure treatment device is a device used for increasing the shelf life of food by sterilizing it by applying hydrostatic pressure to solid or liquid food. The ultrahigh pressure treatment system developed in this study is a pressure vessel with a processing capacity of 100 L and a maximum pressure of 700 MPa. Pressure vessels for ultrahigh-pressure processing equipment are manufactured using wire-winding techniques. The design formula for making ultra-high pressure vessels with wire windings is given in ASME Section VIII - Division 3. In this study, the ratio of the cylinder to the winding area that can be applied in a wire-winding application was analyzed using a finite element analysis. Furthermore, the relationship between the variation of the residual stress in the vessel and the ratio of the winding area due to the variation of the winding tension was analyzed, and a design guide applicable to the actual product design was developed. Finally, the design equation was modified by presenting the coefficients to correct the difference between the finite element analysis and the design equation.

복합재 압력용기의 확률 섬유 강도 (Probabilistic Fiber Strength of Composite Pressure Vessel)

  • 황태경;홍창선;김천곤
    • Composites Research
    • /
    • 제16권6호
    • /
    • pp.1-9
    • /
    • 2003
  • 본 논문에서는 웨이블 분포 함수를 이용한 확률 파손 해석을 통해 복합재 압력 용기의 섬유 강도를 예측하였다. 그리고 섬유 강도의 크기 효과를 확인하고 해석의 타당성을 입증하기 위하여 섬유 인장 시편, 한 방향 복합재 시편과 복합재 압력 용기를 이용만 강도 시험이 수행되었다. 해석적 방법으로 웨이블 최약 링크 파손 모델과 다단계 연속 파손 모델을 이용하였고, 해석 결과를 상호 비교하였다. 크기 효과에 의해, 시편의 부피가 증가함에 따라 섬유 인장 강도가 감소하는 경향을 나타내었다. 해석을 통해 예측한 한 방향 복합재 시편과 복합재 압력 용기의 후프 층 섬유 강도 분포는 시험 값과 좋은 일치를 보였다. 섬유 강도의 크기 효과는 소재와 제작 공정 변수의 함수로서, 다른 소재 및 제작 공정에 대해서는 다른 크기 효과를 보이게 된다.

노심용융사고 시 관통노즐이 제거된 원자로용기 하부헤드의 구조 건전성 평가 (Structural Integrity Evaluation of Reactor Pressure Vessel Bottom Head without Penetration Nozzles in Core Melting Accident)

  • 이연주;김종민;김현민;이대희;정장규
    • 한국전산구조공학회논문집
    • /
    • 제27권3호
    • /
    • pp.191-198
    • /
    • 2014
  • 본 논문에서는 노심용융사고 시 관통노즐이 제거된 원자로용기 하부헤드의 구조 건전성 평가를 수행하였다. 열응력, 노심용융물의 질량 그리고 내압조건의 해석결과를 고려할 때, 하부헤드의 열응력에 의한 영향이 가장 크게 나타났다. 손상 가능성은 파손기준에 따라 평가하였으며, 등가소성변형률이 임계변형률 파손기준보다 낮은 수준으로 평가되었다. 열-구조물 연성해석 결과 하부헤드의 두께 중간층에서 항복강도보다 낮은 응력이 발생한 탄성영역 구간을 확인하였다. 내압이 커지면서 탄성영역 범위가 점차 좁아지면서 탄성영역이 내벽으로 이동하는 결과를 확인하였고, 노심용융사고 시 구조적 건전성을 만족하는 것으로 평가되었다.

Type III 고압수소저장용기의 설계 안전성 연구 (A Study on the Design Safety of Type III High-Pressure Hydrogen Storage Vessel)

  • 박우림;전상구;김송미;권오헌
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.7-14
    • /
    • 2019
  • The type III vessel, which is used to store high-pressure hydrogen gas, is made by wrapping the vessel's liner with carbon fiber composite materials for strength performance and lightening. The liner seals the internal gas and the composite resists the internal pressure. The properties of the fiber composite material depends on the angle and thickness of the fiber. Thus, engineers should consider these various design variables. However, it significantly increases the design cost due to the trial and error under designing based on experience or experiments. And, for aluminum liners, fatigue loads due to using and charging could give a huge impact on the performance of the structure. However, fatigue failure does not necessarily occur in the position under the highest load in use. Therefore, for hydrogen storage vessel, fatigue evaluation according to design patterns is essential because stress distribution varies depend on composite layer patterns. This study performed an optimization analysis and evaluated a high-pressure hydrogen storage vessel to minimize these trial and error and improve the reliability of the structure, while simultaneously conducting fatigue assessment of all patterns derived from the optimization analysis process. The results of this study are thought to be useful in the strength improvement and life design of composite reinforced high-pressure storage vessels.

원전 설계기준 사고시 냉각재계통 부분정체로 인한 비대칭 열유동 혼합해석 (Asymmetric Thermal-Mixing Analysis due to Partial Loop Stagnation during Design Basis Accident)

  • 황경모;진태은;김경훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.51-54
    • /
    • 2002
  • When a cold HPSI (High Pressure Safety Injection) fluid associated with an design basis accident, such as LOCA (Loss of Coolant Accident), enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena will arise due to incomplete mixing. If the stratified flow enters a reactor pressure vessel downcomer, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. Previous thermal-mixing analyses have assumed that the thermal stratification phenomena generated in stagnated loop of a partially stagnated coolant loop are neutralized in the vessel downcomer by strong flow from unstagnated loop. On the basis of these reasons, this paper presents the thermal-mixing analysis results in order to identify the fact that the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is affected by the strong flow of the unstagnated loop.

  • PDF

Calculation of Reactor Pressure Vessel Fluence Using TORT Code

  • Shin, Chul-Ho;Kim, Jong kyung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.771-776
    • /
    • 1998
  • TORT is employed for fast neutron fluence calculation at the reactor pressure vessel. KORI Unit 1 reactor at cycle 1 is modeled for this calculation. Three-dimensional cycle averaged assembly power distributions for KORI Vnit 1 at cycle 1 are calculated by using the core physics code, NESTLE 5.0. The root mean square error is within 4.3% compared with NDR (Nuclear Design Report) far all burnup steps. The C/E (Calculated/Experimental) values for the in-vessel dosimeters distribute between 0.98 and 1.36. The most updated cross-section library. BUGLE-96 based on ENDF/B-VI is used for the neutron fluence calculation. The makimum fast neutron nun calculated on reactor pressure vessel for KORI Unit 1 operated for 411.41 effgctive full power days is 1.784x10$^{18}$ n/$\textrm{cm}^2$. The position of the maximum neutron fluence in RPV wall 1/4 T is nearby 60cm below the midplane at zero degree.

  • PDF

Approximation Method for the Calculation of Stress Intensity Factors for the Semi-elliptical Surface Flaws on Thin-Walled Cylinder

  • Jang Chang-Heui
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.319-328
    • /
    • 2006
  • A simple approximation method for the stress intensity factor at the tip of the axial semielliptical cracks on the cylindrical vessel is developed. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite element analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. For these, 3-D finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R=0.1. The approximation solutions are within $\pm2.5%$ of the those of finite element analysis using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the approximation method provides sufficiently accurate stress intensity factor values for the axial semi-elliptical flaws on the surface of the reactor pressure vessel.