• Title/Summary/Keyword: vessel collision

Search Result 248, Processing Time 0.026 seconds

Ship Detection Using Background Estimation of Video and AIS Informations (영상의 배경추정기법과 AIS정보를 이용한 선박검출)

  • Kim, Hyun-Tae;Park, Jang-Sik;Yu, Yun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2636-2641
    • /
    • 2010
  • To support anti-collision between ship to ship and sea-search and sea-rescue work, ship automatic identification system(AIS) that can both send and receive messages between ship and VTS Traffic control have been adopted. And port control system can control traffic vessel service which is co-operated with AIS. For more efficient traffic vessel service, ship recognition and display system is required to cooperated with AIS. In this paper, we propose ship detection system which is co-operated with AIS by using background estimation based on image processing for on the sea or harbor image extracted from camera. We experiment with on the sea or harbor image extracted from real-time input image from camera. By computer simulation and real world test, the proposed system show more effective to ship monitoring.

Merging of Satellite Remote Sensing and Environmental Stress Model for Ensuring Marine Safety (해상안전을 확보하기 위한 인공위성 리모트센싱과 환경부하모델의 접목)

  • 양찬수;박영수
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.192-197
    • /
    • 2003
  • A virtual vessel traffic control system is introduced to contribute to prevent a marine accident, e.g. ship collision or stranding. from happening. The system that comes from VTS limitaions, consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress (here, INOUE model used) based on the satellite data. Remotely sensed data cab be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If in the future, e.g. 5-minute after, environmental stress values that a ship may encounter on a voyage can be available, proper actions can be taken to prevent accidents. It lastly can be shown that JERS satellite data are used to track ships and extract their information.

  • PDF

A Study on the Investigation and Analysis of Collisions at Sea (선박충돌사고의 원인조사 및 분석방법에 관한 연구)

  • 김상수;정재용;하원재;송두현;박진수
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • The collisions at sea among marine casualties are not reduced as the tonnage and speed of ship's increase as well as the traffic quantity increase at sea, in spite of the improvement of nautical equipment, enforcement of crew's education and training as well as improvement of quality standard according to the implementation of ISM code. The measures to prevent the collisions at sea are simple, and are composed of six stage.: The first stage is that the officer on duty detect the target from his eye or radar information. The second stage is determining the type and kind of target-ship. The third stage is target tracking; calculation of target speed, course, CPA and TCPA from radar information or visual check. The fourth stage is determination of vessel in danger after calculation of third stage. The fifth stage is the judgement of situation if own ship is stand-on or give way vessel according to the 1972 COLREG. The last stage is to carry out proper action according to 1972 COLREG, under the circumstances. But by the case, the situations are so different under the different external conditions; for example, natural/navigational conditions, crew's human factors, ship's particular, rule or regulation, management system on board, the condition of watch keeping. Therefore the reasons and casualties are so complicated. This study aims to investigate the collision casualty at sea which needs to clarity all these causal factors of afore-mentioned, and to analyze the causes of problems so as to utilize them to establish the measures of preventing marine accidents. This study, described the concepts of causal factors into three groups; environmental factor, and company/on board management system and navigator's act. Also described how to investigate and analyzes the casual factors. Even though it was described in this paper how to detect the causal factors and reasons of collisions, and how to analyze the inter-relation of each causal factors, it is necessary to do further study how to analyze between the liability of concerned parties and the casual factors involved.

  • PDF

Prediction of Ship Travel Time in Harbour using 1D-Convolutional Neural Network (1D-CNN을 이용한 항만내 선박 이동시간 예측)

  • Sang-Lok Yoo;Kwang-Il Ki;Cho-Young Jung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.275-276
    • /
    • 2022
  • VTS operators instruct ships to wait for entry and departure to sail in one-way to prevent ship collision accidents in ports with narrow routes. Currently, the instructions are not based on scientific and statistical data. As a result, there is a significant deviation depending on the individual capability of the VTS operators. Accordingly, this study built a 1d-convolutional neural network model by collecting ship and weather data to predict the exact travel time for ship entry/departure waiting for instructions in the port. It was confirmed that the proposed model was improved by more than 4.5% compared to other ensemble machine learning models. Through this study, it is possible to predict the time required to enter and depart a vessel in various situations, so it is expected that the VTS operators will help provide accurate information to the vessel and determine the waiting order.

  • PDF

Analysis of the Minimum Distance of Small and Medium-Sized Fishing Vessels near Busan Port (어선 점용면적 기초 연구를 위한 부산항 중·소형 어선의 통항 이격거리 조사 및 분석)

  • Park, Hyungoo;Kim, Hyundong;Park, Young-soo;Kim, Dae-won;Park, Sangwon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.798-807
    • /
    • 2021
  • In the era of the fourth industrial revolution, Maritime Autonomous Surface Ship(MASS) are expected to emerge in the shipping industry. There has been much active research on collision avoidance systems regarding MASSs, but most of it has focused on merchant ships. A study of collision avoidance systems in fishing vessels is also essential, because Maritime Autonomous Surface Ships will encounter all type of vessels. In this study, the minimum passage distance between small-medium-sized fishing vessels and other vessels was investigated for the Ship's domain analysis. Based on the AIS data of Busan port and the adjacent area, the separation distances of fishing vessels were analyzed. The results indicated that as the speed of fishing vessels increased, the distance increased from 4L to 8L, and as length of the fishing vessels increased, the distance decreased from 10L to 6L. It is believed that the results of this study can be applied in the future to collision avoidance models for MASSs that reflect the domain of fishing vessels.

On the Manoeuvring Motion Considering the Interaction Forces in Confined Waters

  • Lee, Chun-Ki;Kang, Il-Kwon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.639-643
    • /
    • 2003
  • The emphasis is put on the detailed knowledge on manoeuvring characteristic for the safe navigation while avoiding terrible collision between ships and on the guideline to the design and operation of the ship-waterway system The numerical simulation of manoeuvring motion was carried out parametrically for different ship types, ship-velocity ratios, separation and stagger between ships. As for the calculation parameters, the ratios of velocity difference (hereafter, $U_2$/$U_1$ ) between two ships were considered as 0.6, 1.2, 1.5. From the inspection of this investigation, it indicates the following result. Considering the interaction force only as parameter, the lateral distance between ships is necessarily required for the ship-velocity ratio of 1.2, compared to the cases of 0.6 and 1.5 regardless of the ship types. Furthermore, regardless of the ship-velocity ratio, an overtaking and overtaken vessel can be manoeuvred safely without deviating from the original course under the following conditions: the lateral distance between two vessels is approximately kept at 0.5 times of ship-length and 5 through 10. degrees of range in maximum rudder angle. The manoeuvring characteristic based on this investigation will be very useful for keeping the safety of navigation from the practical point of ships design and traffic control in restricted waterways.

Virtual Goal Method for Homing Trajectory Planning of an Autonomous Underwater Vehicle (가상의 목표점을 이용한 무인 잠수정의 충돌회피 귀환 경로계획)

  • Park, Sung-Kook;Lee, Ji-Hong;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.61-70
    • /
    • 2009
  • An AUV (Autonomous Underwater Vehicle) is an unmanned underwater vessel to investigate sea environments and deep sea resource. To be completely autonomous, AUV must have the ability to home and dock to the launcher. In this paper, we consider a class of homing trajectory planning problem for an AUV with kinematic and tactical constraints in horizontal plane. Since the AUV under consideration has underactuated characteristics, trajectory for this kind of AUV must be designed considering the underactuated characteristics. Otherwise, the AUV cannot follow the trajectory. Proposed homing trajectory panning method that called VGM (Virtual Goal Method) based on visibility graph takes the underactated characteristics into consideration. And it guarantees shortest collision free trajectory. For tracking control, we propose a PD controller by simple guidance law. Finally, we validate the trajectory planning algorithm and tracking controller by numerical simulation and ocean engineering basin experiment in KORDI.

Maneuverability of a DWT 8,000-ton oil/chemical tanker by real sea trials - A comparison between the semi-balanced rudder and the flap rudder - (실선시험에 의한 DWT 8,000톤 선박의 조종성능 - Semi-balanced rudder and flap rudder -)

  • An, Young-Su;Lee, Hyeong-Geun;Park, Byung-Soo;Jang, Choong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.257-264
    • /
    • 2015
  • This study is intended to provide navigator with specific information necessary to assist the avoidance of collision and the operation of ships to evaluate the maneuverability of dead weight tonnage 8,000 tons Oil/Chemical tanker. The actual maneuvering characteristics of ship can be adequately judged from the results of typical ship trials. Author carried out sea trials based full scale for turning test, Z" maneuvering test, man overboard rescue maneuver test, inertia stopping test. Consequently, $2^{st}$ Overshoot yaw angle of the semi balanced rudder and flap rudder in ${\pm}20^{\circ}$ zig-zag test showed $22.2^{\circ}$ and $18.0^{\circ}$, respectively. The maneuverability of the vessel was good in the flap rudder. The man overboard rescue maneuver maneuverability test was most favorable in the flap rudder and the full load condition. The results from tests could be compared directly with the standards of maneuverability of IMO and consequently the maneuvering qualities of the ship is full satisfied with its.

Utilization of Planned Routes and Dead Reckoning Positions to Improve Situation Awareness at Sea

  • Kim, Joo-Sung;Jeong, Jung Sik;Park, Gyei-Kark
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.288-294
    • /
    • 2014
  • Understanding a ship's present position has been one of the most important tasks during a ship's voyage, in both ancient and modern times. Particularly, a ship's dead reckoning (DR) has been used for predicting traffic situations and collision avoidance actions. However, the current system that uses the traditional method of calculating DR employs the received position and speed data only. Therefore, it is not applicable for predicting navigation within the harbor limits, owing to the frequent changes in the ship's course and speed in this region. In this study, planned routes were applied for improving the reliability of the proposed system and predicting the traffic patterns in advance. The proposed method of determining the dead reckoning position (DRP) uses not only the ships' received data but also the navigational patterns and tracking data in harbor limits. The Mercator sailing formulas were used for calculating the ships' DRPs and planned routes. The data on the traffic patterns were collected from the automatic identification system and analyzed using MATLAB. Two randomly chosen ships were analyzed for simulating their tracks and comparing the DR method during the timeframes of the ships' movement. The proposed method of calculating DR, combined with the information on planned routes and DRPs, is expected to contribute towards improving the decision-making abilities of operators.

Theoretical Approach of Optimization of the Gain Parameters α, β and γ of a Tracking Module for ARPA system on Board Warships

  • Jeong, Tae-Gweon;Pan, Bao-Feng;Njonjo, Anne Wanjiru
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.55-57
    • /
    • 2015
  • The tracking system plays a key role in accurate estimation and prediction of maneuvering vessel's position and velocity in a bid to enhance safety by taking avoiding action against collision. Therefore, in order to achieve this, many ocean- going vessels are equipped with radar and the ARPA system. However, the accuracy of prediction highly depends on the choice of the gain parameters, ${\alpha}$, ${\beta}$ and ${\gamma}$ employed in the tracking filter. P revious research of this paper was based on theoretically developing an algorithm for a tracking module. This research paper is hence a continuation by the authors to determine the optimal values of the gain parameters used in the tracking module. A tracking algorithm is developed using the ${\alpha}-{\beta}-{\gamma}$ filter to carry out prediction and smoothing of the positions and velocities. Numerical simulations are then performed to evaluate the optimal values of the smoothing parameters that will improve the performance of the tracking module and reduce measurement noise. The twice distance root mean square (2drms) is then calculated to determine error variation.

  • PDF