• Title/Summary/Keyword: very early strength

Search Result 188, Processing Time 0.026 seconds

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

Mix Design Conditions at Early Curing Age of PCS-Coating Material Effected on Improvement in Bond Strength of Coated Rebar (도장철근의 부착강도 개선에 영향을 미치는 초기재령에서의 PCS 도장재 배합조건)

  • Jo, Young-Kug;Park, Dong-Yeol;Kim, Wan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.73-80
    • /
    • 2013
  • Polymer cement slurry (PCS) made from organic polymer dispersion and cement has good adhesion to steel, waterproofness and acid resistance due to being of polymer films formed in cement slurry. The purpose of this study is to evaluate the mix design conditions at early curing age of PCS-coating material effected on improvement in bond strength of coated rebar. The test pieces are prepared with two types of polymer dispersions such as St/BA and EVA, four polymer-cement ratios, two types of cement, four coating thicknesses and three curing ages, and tested for the bond strength test. From the test results, in general, bond strength of PCS-coated rebar is better than that of uncoated rebar and epoxy-coated rebar. It is also high bond strength at curing ages of 7-day or less, and coating thicknesses of $75{\mu}m$ and $100{\mu}m$. The maximum bond strength of PCS-coated rebar at curing age of 3-hour is almost same as that of curing age of 1-day and 7-day. The maximum bond strength of PCS-coated rebar with ultra high-early strength cement and St/BA at polymer-cement ratio of 80%, and coating thickness of $100{\mu}m$ is about 1.52 and 1.58 times respectively, the strength of uncoated rebar and epoxy-coated rebar. It is apparent that the curing age, coating thickness, type of polymer and cement are very important factors to improve the bond strength of PCS-coated rebar to cement concrete. We can have basic information that PCS-coated rebar with curing age at 3-hour and coating thickness of $100{\mu}m$ can replace epoxy-coated rebar.

A Study on the Strength Properties and the Temperature Hysteresis of Winter Concrete according to the difference of Curing Method in Mock-up Test (실물대시험에서의 양생방법 차이에 따른 한중콘크리트의 온도이력 및 강도특성에 관한 연구)

  • Won, Cheol;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.87-94
    • /
    • 2003
  • This study is to investigate the temperature hysteresis and development of compressive strength due to the curing conditions and to evaluate the optimum curing condition of test specimens showing the same development of strength to that of real structures in cold weather. The results of temperature curve with curing conditions in mock-up tests showed the trend of decrease plain concrete with insulation form, plain concrete with heating, concrete with accelerator for freeze protection, and control concrete in turn. The strength development of plain concrete of inside and outside of shelter showed the very slow strength gains due to early freezing, but that of concrete with accelerator for freeze protection showed the gradual increase of strength with time. From this, it is clear that accelerator for freeze protection has the effects of refusing the freezing temperature and accelerating the hardening under low temperature. Strength test results of small specimens embedded in members and located in insulation boxes at the site are similar to that of cores drilled from the members at the same ages, thus it is clear that these curing methods are effective for evaluating in-place concrete strength

Basic Creep Model by Considering Autogenous Shrinkage

  • Lee, Yun;Kim, Jin-Keun;Kim, Min-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1071-1076
    • /
    • 2003
  • Basic creep of concrete during very early ages is an important factor on the behavior of young concrete and a great deal of research has been executed. However, in recent studies, it was revealed that the basic creep measured by sealed concrete was inaccurate, especially for high strength concrete because of autogenous shrinkage at early age. This paper presents the results from experimental study that investigate to explore the effect of autogenous shrinkage in basic creep. More specifically, four different mix proportions were casted and the primary variables were water-cement ratios. Through this research, it was found that the differences between apparent specific creep and real specific creep were remarkable in low water-cement ratio at early age. Therefore, it is recommended to modify existing creep model by considering autogenous shrinkage

  • PDF

Compressive Strength of Geopolymers while Varying the Raw Materials (무기질 원료에 따른 지오폴리머의 압축강도 특성)

  • Joo, Gi-Tae;Lee, Tae-Kun;Park, Mihye;Hwang, Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.575-580
    • /
    • 2012
  • Geopolymers were synthesized using raw materials produced from two different areas: one was from Indonesia and the other was from Habcheon, Korea. The constituting phases of the Indonesian raw material were quartz and kaolinite, while those of the Habcheon sample were quartz, halloysite and albite. They were both calcined at $750^{\circ}C$ for 6 hours, and solution of NaOH and water glass was added to activate the geopolymeric reaction. The compressive strength of geopolymer synthesized from the Indonesian raw material showed a low value of $151\;kgf/cm^2$ after curing for 28 days. However, it could be greatly increased by adding blast furnace slag powders of $1188\;kgf/cm^2$ and $1969\;kgf/cm^2$ at 20 wt% and 40 wt% additions, respectively. The compressive strength of the geopolymer synthesized from the Habcheon raw material was high, at $557\;kgf/cm^2$, after 28 days, and the very high early-stage (3 days) strength of $556\;kgf/cm^2$ for this sample was remarkable. Commercially available Habcheon metastate raw material, of which composition showed low CaO and $Na_2O$ contents compared to the calcined Habcheon raw material, was also examined. It was found that the compressive strength of the commercial metastate type was nearly identical to that of the calcined Habcheon raw material except for the relatively low value at an early curing stage and at a high curing temperature of $60^{\circ}C$.

Reliability approximation for a complex system under the stress-strength model

  • Nayak, Sadananda;Roy, Dilip
    • International Journal of Reliability and Applications
    • /
    • v.13 no.2
    • /
    • pp.71-80
    • /
    • 2012
  • This paper introduces a new approach for evaluating reliability of a complex system in terms of distributional parameters where analytical determination of reliability is intractable. The concept of discrete approximation, reported in the literature so far, fails to meet the latter requirement in terms of distributional parameters. The current work aims at offering a bound based approach where reliability planners not only get a clear idea about the extent of error but also can manipulate in terms of distributional parameters. This reliability approximation has been under taken under the Weibull frame work which is the most widely used model for reliability analysis. Numerical study has been carried out to examine the strength of our proposed reliability approximation via closeness between the two reliability bounds. This approach will be very useful during the early stages of product design as the distributional parameters can be adjusted.

  • PDF

Preparation and Characterization of the Mine Residue-based Geopolymeric Ceramics (광미를 이용한 지오폴리머 세라믹제조 및 물성)

  • Son, Se-Gu;Lee, Woo-Keun;Kim, Young-Do;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.502-508
    • /
    • 2011
  • The goal of the present work was to investigate the development of a geopolymeric ceramic material from a mixture of mine residue, coal fly ash, blast furnace slag, and alkali activator solution by the geopolymer technique. The results showed that the higher compressive strength of geopolymeric ceramic material increased with an increase in active filler (blast furnace slag + coal fly ash) contents and with a reduction of mine residue contents. The geopolymeric ceramic had very high early age strength. The compressive strength of the geopolymeric ceramic depended on the added active filler content. The maximum compressive strength of the geopolymeric ceramic containing 20 wt.% mine residue was 141.2 MPa. The compressive strength of geopolymeric ceramic manufactured by adding mine residue was higher than that of portland cement mortar, which is 60 MPa, when cured for 28 days. SEM observation showed the possibility of having amorphous aluminosilicate gel within geopolymeric ceramic. XRD patterns indicate that the geopolymeric ceramic was composed of amorphous aluminosilicate, calcite, quartz, and muscovite. The Korea Standard Leaching Test (KSLT) was used to determine the leaching potential of the geopolymeric ceramic. The amounts of heavy metals were noticeably reduced after the solidification of mine residue with active filler.

Characterization of Tribolayers and Sliding wear at High Temperature between AlCrN Coated Tool Steels and Ultra-high Strength Boron Steels

  • Choi, Byung-Young;Gu, Yoon-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • High temperature wear of AlCrN coated tool steels sliding against the ultra-high strength boron steels used for hot press forming has been studied. The sliding wear tests have been carried out using a pin-on-disc of configuration under applied normal load of 50 N for 20 min with heating the ultra-high strength boron steels up to $800^{\circ}C$. Characterizations of tribolayers formed on the contacting surfaces between the tribopairs of the AlCrN coated tool steels and the ultra-high strength boron steels have been studied. It was found on the tribolayers of the AlCrN coated tool steels that microcracking and oxides containing Fe and Cr to increase friction coefficient were formed at the early stage of sliding wear, followed by the generation of the smeared oxide layers containing Fe transferred from the tribopair to decrease friction coefficient. This may mainly contribute to very low specific wear rate of the AlCrN coated tool steels sliding against the ultra-high strength boron steels, resulting from oxideoxide contact between the tribopair.

The Mechanical Properties of Concrete Using Blended Super Low Heat Cement (혼합형 초저발열 시멘트를 사용한 콘크리트의 물성-현수교 앵커리지 콘크리트 대상-)

  • 송용순;강석화;손명수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.341-344
    • /
    • 1999
  • In the case of the offshore concrete structures like the anchorage block of a suspension bridge of Kwangan Grand Road, there is a need of the concrete which has low heat of hydration and good resistance for sea-water attack. In this study, the blended super low heat cement which satisfies that requirement was developed and several tests were carried out. The concrete using the blended super low heat cement showed lower adiabatic temperature rise than 3$0^{\circ}C$ and good early strength. Also, its passed charge(coulomb) to resist chloride ion penetration was very low.

  • PDF