• Title/Summary/Keyword: very early strength

Search Result 188, Processing Time 0.035 seconds

Postbuckling response and failure of symmetric laminated plates with rectangular cutouts under in-plane shear

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.175-188
    • /
    • 2010
  • This paper deals with the buckling and postbuckling responses, and the progressive failure of square laminates of symmetric lay-up with a central rectangular cutout under in-plane shear load. A detailed investigation is made to show the effects of cutout size and cutout aspect ratio on the buckling and postbuckling responses, failure loads and failure characteristics of $(+45/-45/0/90)_{2s}$, $(+45/-45)_{4s}$ and $(0/90)_{4s}$ laminates. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. In addition, the effects of boundary conditions on buckling loads, failure loads, failure modes, and maximum transverse deflection for a $(+45/-45/0/90)_{2s}$ laminate with and without a square cutout have been presented. It is concluded that because of early onset of delamination at the net section of cutouts before first-ply failure, total strength of the laminate with very small cutouts can not be utilized.

Prediction Model for Autogenous Shrinkage of High Strength Fly Ash Concrete (고강도 플라이 애쉬 콘크리트의 자기수축 예측 모델)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.134-142
    • /
    • 2003
  • Autogenous shrinkage, a significant contributor of early-age cracking of high strength concrete (HSC), must be avoided or minimized from an engineering point of view. Therefore, it is necessary to study how to reduce and to predict autogenous shrinkage with respect to tile control of early-age cracking. In this study, autogenous shrinkage of HSC with various water-binder ratio (W/B) ranging from 0.50 to 0.27 and fly ash content of 0, 10, 20, and 30% were investigated. Based on the test results, thereafter, a prediction model for autogenous shrinkage was proposed. Test results show that autogenous shrinkage increased and more rapidly developed with decreasing the W/B. Also, the higher fly ash contents, the smaller autogenous shrinkage. In particular, even if much autogenous shrinkage occurs at very early-ages, stress may not be developed while the stiffness of concrete is low. In order to consider the change of concrete stiffness, the transition time referred as stiffening threshold, was obtained by monitoring of ultrasonic pulse velocity evolution and considered in the autogenous shrinkage model. From a practical point of view, the proposed model can be effectively used to predict autogenous shrinkage and to estimate stress induced by autogenous shrinkage.

A Study for Controlling Early-age Temperature Rise of the Concrete Pavement by Shadow Tent in Hot Weather Construction (차광막를 이용한 하절기 콘크리트포장의 초기온도 관리 방안연구)

  • Joh, Young-Oh;Kim, Hyung-Bae;Suh, Young-Chan;Ann, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.75-89
    • /
    • 2004
  • Long term performance of concrete pavement significantly depends on the given construction and environmental condition. It means that random cracks and extreme crack width due to inappropriate quality control at the early age might lead to decreasing the pavement service life. The temperature and moisture during the construction, cement and aggregate types, curing condition are major components to affect the quality of the concrete pavement at the early age. First of all, the high temperature differential, that is made by increasing air temperature and the heat of cement hydration, is known as the major contributor to severe cracks. In this study, tent covering was used for controlling temperature of the concrete slab. The field measurement data indicates that the effect of the tent covering is very significant to decrease possibilities of random crack occurrence and curling stress and enhance the long-term concrete strength. HIPERPAV(High PERformance PAVing software), a program predicting the strength and stress of an earty-age concrete pavement (72 hour after placement), is used for simulating the effects of tent covering. The HIPERPAVE results showed that the section with the tent covering has higher reliability than the section without the tent covering by 22.5%. In details, reliability is increased 72.5% (without the tent covering) to 95% (with the tent covering).

  • PDF

A Study on the Development of Non-PC High-Early-Strength Concrete Without Steam Curing (증기양생이 불필요한 PC부재용 조강형 콘크리트 개발에 관한 연구)

  • Jun, Woo-Chul;Lee, Ji-Hwan;Park, Hee-Gon;Lee, Jae-Sam;Kim, Kyung-Min;Cho, In-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.156-162
    • /
    • 2014
  • This study aims to develop a rapidly hardening type of concrete to achieve the removal of form intensity (more than 10MPa) using the method of curing at room temperature in order to solve some economic environmental problems by omitting the steam curing process involved in producing PC (Precast Concrete). Therefore, this study evaluated a rapidly hardening cement containing a high amunt of C3S, which is very responsive in expressing early intensity, and a rapidly hardening type of concrete which uses some hardening accelerator to increase thehydration reaction of $C_3S$. The results of the experiment on concrete using some hardening accelerator are asfollows. In the slump flow experiment for identifying the liquidity and the air test, the desired values were met. The compression strength showed rapid expression response by 12 hours, and met the desired value within 6~9 hours. Its drying shrinkage value and Autogenous shrinkage value were measured as below ($-754.5{\times}10^{-6}$),and satisfied the requirements. In addition, in the Semi-Adiabatic Temperature Test, it was found that the concrete rose to its peak temperature within 24 hours and then its temperature dropped.

A Study on the Effect of Curing Temperature on the Unconfined Compressive Strength of Soil Cement Mixtures. (양생온도가 Soil Cement의 압축강도에 미치는 영향에 관한 연구)

  • 김재영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3931-3942
    • /
    • 1975
  • This study was conducted to investigate the strength of soil cement for varied curing temperatures (0,10,20,30,40,50,60$^{\circ}C$) and cement content (3,6,9,12%) in four cement-stabilized soils (KY: sand, MH: sand, SS: sandy loam, JJ:loam). The experimental results obtained from unconfined compressive strength tests were as follows: 1. According to increase of curing temperature as 30,40,50, and 60$^{\circ}C$, the unconfiened compressive strength of soil cement increased, the rate of increase in the early curing period was large, and around 120 hours was suifficient curing time to complete hardening. 2. The strength at 10$^{\circ}C$ decreased to the rate of 30 to 40 percent than that of 20$^{\circ}C$ while the strength at 0$^{\circ}C$ was very small, strength of soil cement increased in cold weather unless that the temperature was below 0$^{\circ}C$ 3. The average maximum temperature, about 30$^{\circ}C$ during July and August in Korea may be recommended for a optimum construction period to increase the strength of soil cement. 4. Accelerated curing time that strength was equivalent to 28-Day norma1 curing decreased in accordance with the increase of curing temperature, and also accelerated curing decreased the effect of cement content. Accelerated curing that strength was equivalent to 28-day normal curing for soil cement of cement content 9% and temperature 60$^{\circ}C$ was 45 hours; KY, 50 hours: MH, 40 hours; SS, 34 hours; JJ. 5. According to the increase of the percent passing of No. 200 sieve, accelerated curing times became shorter to become the required stength. 6. Relation between accelerated curing times and normal curing days was showeda linear of which slope decreased in accordance with the increase of curing temperature, it may be expressed as follows: (1). 30$^{\circ}C$ t=3.6d+6(r=0.97) (2). 40$^{\circ}C$ t=3.2d-5.1(r=0.95) (3). 50$^{\circ}C$ t=2.1d-4.0(r=0.93) (4). 60$^{\circ}C$ t=1.4d+4.0(r=0.90) in which t=accelerate curing time. d=normal curing day. 7. Accelerated curing time that the strength was equivalent to 35kg/$\textrm{cm}^2$ which was the strength of cement brick was 96 hours at temperature 30$^{\circ}C$ to SS 9%, and 120 hours at temperature 50$^{\circ}C$ to JJ 9%, Consequently, a economic soil cement brick may be made in future.

  • PDF

A Study of 240MPa Ultra High Strength Concrete Properties Using High Flow Cement (하이플로 시멘트를 이용한 240MPa 초고강도 콘크리트 물성에 관한 연구)

  • Kim, Kang-Min;Yoo, Seung-Yeup;Song, Yong-Soon;Koo, Ja-Sul;Kang, Suck-Hwa;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.365-368
    • /
    • 2008
  • This research is related to 240MPa ultra-high strength concrete(UHSC) with extremely loss W/B ratio. For this development, High flow cement is mainly used which has a short reaction rate due to the high blaine and high early strength, which can make greater fluidity in case of very low W/C ratio. It made the best mixture using the mineral admixtures silica fume, slag powder and special admixture. For dispersibility and homogeneity of cement binder, cement of premix type is produced using omni-mixer. Moreover, it ensures the fluidity of ultra-high strength concrete(UHSC). For having a good fire performance, we made an experiment special coarse aggregate. As a result, we got 180MPa in case of water curing, 200MPa in case of steam curing and uniform UHSC of 240MPa in case of a special curing method.

  • PDF

A Study on Military-style gymnastics and Its Adoption in Public Schools in Late Chosun dynasty

  • Kim, Dae Sung;Kim, Youn Soo;Shin, Eui Yun
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.152-157
    • /
    • 2018
  • In the late 19th century and early 20th century, Among those of the Northeast Asia three countries, school physical education and military-style gymnastics of Chosun can be regarded as having been the most nationalistic. The adoption of modern physical education in public schools was from the proclamation of 'the Order on Building the Country through Education by King Gojong in February 1895. This paper intends to examine the process of adopting military-style gymnastics education which played the central role in school physical education in the late Chosun period. But, unlike the common guess that military-style gymnastics in public schools in late Chosun would have been full of patriotism and nationalism, the textbooks and teaching contents of Chosun Military Officers' School were very similar to those of Japan, which is an unexpected fact. Therefore, Chosun decided to accept the Japanese-type military-style gymnastics and military training to improve physical strength of youngsters and military power. The fact that, with the advent of modern education, physical education was emphasized above all else has a very important meaning to the history of Korean physical education. Physical activity education emerged as a major education course which had been unthinkable in previous ages. The second characteristics is that the process of adopting military-style gymnastics and its contents were influenced by Japan Third, even if military-style gymnastics was imported from Japan as part of school physical education course in late Chosun period, its aim was to train military man powers for the independence movement against Japan, rather than to develop harmonious body.

Co-Re-based alloys a new class of material for gas turbine applications at very high temperatures

  • Mukherji, D.;Rosler, J.;Wehrs, J.;Eckerlebe, H.;Gilles, R.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.205-219
    • /
    • 2012
  • Co-Re alloy development is prompted by the search for new materials for future gas turbines which can be used at temperatures considerably higher than the present day single crystal Ni-based superalloys. The Co-Re based alloys are designed to have very high melting range. Although Co-alloys are used in gas turbine applications today, the Co-Re system was never exploited for structural applications and basic knowledge on the system is lacking. The alloy development strategy therefore is based on studying alloying additions on simple model alloy compositions of ternary and quaternary base. Various strengthening possibilities have been explored and precipitation hardening through fine dispersion of MC type carbides was found to be a promising route. In the early stages of the development we are mainly dealing with polycrystalline alloys and therefore the grain boundary embrittlement needed to be addressed and boron addition was considered for improving the ductility. In this paper recent results on the effect of boron on the strength and ductility and the stability of the fine structure of the strengthening TaC precipitates are presented. In the beginning the alloy development strategy is briefly discussed.

Characteristic of Refrigerant for Heat-treatment Deformation Control of SCM415 Steel (SCM415강의 열처리 변형제어를 위한 냉각 매질의 특성)

  • Ahn, Min-ju;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.59-65
    • /
    • 2010
  • This study deals with the characteristic of refrigerant for heat-treatment deformation control of SCM415 steel. The control of heat-treatment deformation must need the progress of production parts for an industry machine. Most of the deformation is occurred on unequal cooling. The unequal cooling is occurred by a property of quenching refrigeration. When a heated metal is deposited in the refrigeration, the cooling speed is so slow in early period of cooling because of occurring a steam-curtain. After more cooling, the steam-curtain is destroyed. In this progress, the cooling speed is very fast. The object of this study is to control the deformation of heat-treatment for the part of the industry machine by improving the conditions of quenching. The cooling curves and cooling rates of water, oil and polymer solution are obtained and illustrated. From the characteristics of the quenching refrigerant, the effects of heat-treatments on the thermal deformation and fatigue strength are also investigated.

Ulnar Nerve Compression in Guyon's Canal by Ganglion Cyst

  • Kwak, Kyung-Woo;Kim, Min-Su;Chang, Chul-Hoon;Kim, Seong-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.2
    • /
    • pp.139-141
    • /
    • 2011
  • Compression of the ulnar nerve in Guyon's canal can result from repeated blunt trauma, fracture of the hamate's hook, and arterial thrombosis or aneurysm. In addition, conditions such as ganglia, rheumatoid arthritis and ulnar artery disease can rapidly compress the ulnar nerve in Guyon's canal. A ganglion cyst can acutely protrude or grow, which also might compress the ulnar nerve. So, clinicians should consider a ganglion cyst in Guyon's canal as a possible underlying cause of ulnar nerve compression in patients with a sudden decrease in hand strength. We believe that early decompression with removal of the ganglion is very important to promote complete recovery.