• Title/Summary/Keyword: vertical vent

Search Result 31, Processing Time 0.029 seconds

An Experimental Study of Smoke Movement in Tunnel Fires (터널화재시 연기 거동에 관한 실험적 연구)

  • Lee, Sung-Ryong;Kim, Choong-Ik;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.121-126
    • /
    • 2001
  • In this study, reduced-scale experiments were conducted to understand smoke movements in tunnel fires with the natural ventilation. The 1/20 scale experiments were conducted under the Froude scaling since the smoke movement in tunnels is governed by buoyancy force. Six cases of experiments(pool diameter is 6.5cm, 7.3cm, 8.3cm, 10cm, l2.5cm and l5.4cm), in which vertical vents positioned 1m from the fire source symmetrically, were conducted in order to evaluate the effect of the vent on smoke movement. In case of heat release rate under 2MW, smoke front reached to the tunnel exit about 20 see delayed with ventilation and the smoke velocity was proportional to the power of the heat release rate. Temperature after the vent was lower than without vent. In case of l5.4cm pool, the temperature difference was about $50^{\circ}C$. It was confirmed that the thickness of smoke layer was maintained uniformly under the 35% height of tunnel through the visualized smoke flow by a laser sheet and the digital camcoder.

  • PDF

Comparison of CTD Cast and CTD Tow-yo Methods for Detecting Hydrothermal Plume (열수 플룸 검출을 위한 CTD Cast와 CTD Tow-yo 방법 비교)

  • Son, Juwon;Joo, Jongmin;Ham, Dong Jin;Yang, Seungjin;Kim, Jonguk
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.179-187
    • /
    • 2014
  • Directly searching for undiscovered hydrothermal vent sites is inefficient due to the practical difficulty of comprehensively imaging vent fields. Thus, most searches for hydrothermal vent sites rely on the detection of hydrothermal plumes from water column observation. Detecting and measuring the hydrothermal plumes are the most efficient way to infer the presence and distribution of hydrothermal vents. Both the array of vertical casting and lateral towing are the most common methods to discover hydrothermal plumes. In this study, we compared results of cast and tow-yo operations along the same section of a spreading center with a distance of 20.5 km in the North Fiji Basin for mapping hydrothermal plumes. Operation of CTD tow-yo provides a detailed pattern of plumes which enable us to locate the hydrothermal vents. On the other hand, identification of hydrothermal activity can be determined effectively by CTD cast with additional analysis of geochemical tracers. Reduction in the operating time is another advantage of CTD cast operation, especially for regional-scale survey. Our results show that the combination of CTD cast and tow-yo would improve the efficiency of the hydrothermal plume survey to locate new hydrothermal vent sites.

An Experimental Study of Smoke Movement in Tunnel Fires with Natural Ventilation (터널 화재시 자연 배기에 의한 연기 거동에 관한 실험적 연구)

  • 이성룡;김충익;유홍선
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • In this study, reduced-scale experiments were conducted to understand smoke movements in tunnel fires with the natural ventilation. The 1/20 scale experiments were conducted under the Froude scaling since the smoke movement in tunnels is governed by buoyancy force. Three cases of experiments, in which a natural vent location varied from 1 m, 2 m and 3 m from the fire source symmetrically, were conducted in order to evaluate the effect of the position of ventilation systems on smoke movement. In case of a poo1 whose diameter is 4.36 cm, the temperature of smoke layer passed through the vent was maintained 7~$8^{\circ}c$ less than that of smoke layer without a vent. In case of a pool whose diameter is 5.23 cm, the average velocity passed through the vent was decreased when it was close to the fire source. And the maximum delay time was 3.86s. In CASE 1, the ceiling temperature was decreased by approximately 8$^{\circ}C$ and the vertical temperature was decreased by approximately $7^{\circ}c$. In CASE 2, both ceiling and vertical temperature wert decreased by $3^{\circ}c$ and in CASE 3, they were decreased by $2^{\circ}c$ each. It was confirmed that the thickness of smoke layer was maintained uniformly under the 25% height of tunnel through the visualized smoke flow by a laser sheet and the digital camcoder.

  • PDF

Observation, Experiment, and Analysis of the Ice Spikes Formation (솟는 고드름의 형성과정에 관한 관찰, 실험 및 분석)

  • Yoon, Ma-Byong;Kim, Hee-Soo;Son, Jeong-Ho;Yang, Jeong-Woo
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.454-463
    • /
    • 2009
  • In this study, from January 2006 to February 2009, we observed 107 ice spikes formed in a natural state, and analyzed their environment. We developed an experimental device to reproduce ice spikes in laboratory and successfully made 531 ice spikes. We analyzed the process of the formation and the principle of how those ice spikes grow through videotaped data of the formation in the experiment. In the natural world, when the surface of water and the lower part of a vessel begin to freeze, a vent (breathing hole) develops at the surface where an ice is not frozen; this vent serves as the seed of an ice spike. It is assumed that the volume expansion of ice in the vessel which occurs when water freezes makes the supercooled water go upward through the vent and becomes an ice bar called an ice spike. In the laboratory, however, when distilled water is poured into an ice tray cube and kept in the experimental device for about one and a half hours at a temperature of -12- $-13^{\circ}C$, a thin layer of ice then begins to develop on the surface of the water, the vent is formed, and ice spikes form for about 10-30 minutes. These spikes stop growing when the end becomes clogged. Ice spikes can be described as falling into seven categories of shape, with the apex type topping the list followed by the slant type in the natural state and the vertical type predominating in the laboratory.

Study on the Performance Improvement of Roof Fan Used for Local Exhaust System Installed in Apartment (공동주택의 국소배기용 루프팬 성능개선에 관한 연구)

  • Kwon, Yong-Il;Jeong, Yeol-Wha;Ahn, Jung-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.136-141
    • /
    • 2012
  • Performance improvement of local exhaust system used in toilet and cooking place are main concern in a field of ventilation. In Korea, There are many high riser residential apartments in recent years. These buildings were not viewed as being major contributors to exhaust pollutants producted in indoor. It was because many engineers thought that exhaust in high riser building depends on stack effect. This study investigates on the performance improvement of terminal device, roof fan, of vertical spiral duct used in high riser residential apartments. This paper focuses mainly on the effect of accessories, number or shape of blades, composed of roof fan with function of exhaust air volume of toilet and cooking place. Roof fan with 10 blades is observed at optimum exhaust performance in this study.

An Applicability Estimation of Plastic Vertical Pipes using Electric Fusion Fittings through Measurement (실측을 통한 융착식 플라스틱 입상배관 성능 평가)

  • Park, Yool;Ahn, Young-Chull;Kim, Hyun-Dae;Kim, Jeong-Su;Goark, You-Shik;Kim, Young-Kyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.595-599
    • /
    • 2013
  • The pipes used in buildings are generally categorized into metallic or plastic materials. Metal pipes, such as copper and stainless steel pipes, are mainly used for water and hot water supply, and for the heating system. However, plastic pipes made of polyethylene and cross-linked polyethylene are used for floor heating, water drainage, and air vent systems. Usually, plastic pipes have thermal demerits, such as high linear expansion coefficients and bending phenomenon by hot water, although the pipes have several merits of light weight, low price, low thermal conductivity, and the comparatively high workability of metal pipes. Therefore, if those kind of demerits are overcome, plastic pipes can be easily accepted for hot water systems. This research is aimed to evaluate the applicability for vertical heating pipes of a plastic pipe system consisting of electric fusion fitting of a conductive carbon compound and propylene random glass fiber pipe, through measurement of the expansion rate and leakage in summer and winter seasons, in the apartment construction field.

Effects of the Geometry and Location of an Vertical Opening on the Fire Characteristics in the Under-Ventilated Compartment Fire (환기부족 구획화재에서 수직 개구부의 형상 및 위치가 화재특성에 미치는 영향)

  • Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.20-29
    • /
    • 2013
  • To investigate numerically the effects of geometry and location of vertical opening on the thermal and chemical fire characteristics in full-scale under-ventilated compartment fires, the ventilation factor ($A\sqrt{h}$) to estimate a theoretical maximum inflow of ambient air and the mass loss rate in a heptane pool fire were fixed for all cases. It was shown that variations in door geometry affected significantly the change in thermal and chemical characteristics inside the compartment. Variations in window location resulted in the complex change in additional fire characteristics including the fire duration time and recirculating flow structure. These results were analyzed in details by the multi-dimensional flow and fire characteristics including the vent flow and fuel/air mixing phenomena.

Effect of Tunnel Entrance Shape of High Speed Train on Aerodynamic Characteristics and Entry Compression Wave (고속전철의 터널입구 형상이 공력특성 및 터널입구 압축파에 미치는 영향)

  • Jeong, Soo-Jin;Kim, Woo-Seung;Zhu, Ming
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.111-118
    • /
    • 2004
  • The work presented in this paper concerns the aerodynamic characteristics and compression wave generated in a tunnel when a high speed train enters it. A large number of solutions have been proposed to reduce the amplitude of the pressure gradient in tunnels and some of the most efficient solutions consist of (a) addition ofa blind hood, (b) addition of inclined part at the entrance, and (c) holes in the ceiling of the tunnel. These are numerically studied by using the three-dimensional unsteady compressible Euler equation solver with ALE, CFD code, based on FEM method. Computational results showed that the smaller inclined angle leads to the lower pressure gradient of compression wave front. This study indicated that the most efficient slant angle is in the range from $30^{\circ}$ to $50^{\circ}$. The maximum pressure gradient is reduced by $26.81\%$ for the inclined angle of $30^{\circ}$ as compared to vertical entry. Results also showed that maximum pressure gradient can be reduced by $15.94\%$ in blind hood entry as compared to $30^{\circ}$ inclined tunnel entry. Furthermore, the present analysis showed that inclined slant angle has little effect on aerodynamic drag. Comparison of the pressure gradient between the inclined tunnel hood and the vertical entry with air vent holes indicated that the optimum inclined tunnel hood is much more effective way in reducing pressure gradient and increasing the pressure rise time.

Distribution of Gas Extruded from Sanitary Landfill (쓰레기 매립지에서 대기중에 유출하는 가스 분포)

  • 이해승;이찬기
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.63-72
    • /
    • 1997
  • This study presents a surveying of methane and carbon dioxide at sanitary landfills. The following results are obtained. (1) The majority of methane and the half of carbon dioxide pour out from vertical gas vents. (2) The quantity of carbon dioxide in cove. soil was greater than methane. (3) Even though gas extrusion in side slop area was small, the quantity of gas extrusion in side slop area was much greater than in coversoil area as especially carbon dioxide rate. (4) As were carried raw refuse layer, methane extrusion was trace, but carbon dioxide was large. (5) Gas extrusion quantity were changed by the compaction of soil, and the operating area of refuse. (6) Carbon dioxide portioned much larger in the whole landfill, but methane portioned much larger in gas vent and coversoil.

  • PDF

Occurrence Form of an Intrusive Welded Tuff in Geumseongsan Caldera (금성산(金城山) 칼데라내의 관입용결응회암(貫入熔結凝灰岩)의 산출형태(産出形態))

  • Hwang, Sang Koo;Lee, Gi-Dong;Kim, Sang Wook;Lee, Jae Young;Lee, Yoon Jong;Hwang, Jae Ha;Kim, Dong Hak
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.415-423
    • /
    • 1995
  • A welded tuff with a near-vertical parataxitic fabric crops out as an elliptical shape($500{\times}350m$) in horizontal section, the Geumseongsan volcanic field. It intrudes the Cretaceous sedimentary rocks of the upper Hayang Group, surge tuff and rhyolite of the Geumseongsan volcanic complex. Generally it displays an ubiquitous, steeply inward-dipping welding foliation, subparallel to the margins of the intrusion, and a subvertically inward-inclined lineation defined by extremely stretched fiammes on the welding foliation plane. These fabrics suggest its overall form may be of an inverted cone-shaped plug representing a flared vent that served as a feeder for extrusive welded ash-flow tuff sheets.

  • PDF