• 제목/요약/키워드: vertical transport

검색결과 363건 처리시간 0.031초

대기오염물질의 연직 수송에 미치는 전선의 역할 I: 2차원 전선모델을 이용한 수송 실험 (The Role of Fronts on the Vertical Transport of Atmospheric Pollutants I: 2D frontal model experiment)

  • 남재철
    • 대기
    • /
    • 제14권3호
    • /
    • pp.29-40
    • /
    • 2004
  • It is well known that convections and fronts are the most effective weather systems for the vertical transport of pollutants. I used a two dimensional front model in order to investigate the mechanism of the vertical transport of atmospheric pollutants between planetary boundary layer(PBL) and free atmosphere by fronts. The main dynamic processes which contribute the vertical transport of pollutants are advection and diffusion. The transported amount of pollutant from the boundary layer to the free atmosphere increases dramatically during the developing stage of the front. 46% of pollutants are transported vertically within 12 hour and 54% are transported within 24 hour. In the meantime, compared to the total amount of pollutants transported by both advection and diffusion, about 25% (30%) less pollutants are transported when only advection (diffusion) process in included in the model. The most important mechanism for the vertical transport is vertical advection, while the vertical diffusion process plays an important role in the redistribution of pollutants in the PBL.

대기오염물질의 연직 수송에 미치는 전선의 역할 II: MM5를 이용한 3차원 연직 수송 실험 (The Role of Fronts on the Vertical Transport of Atmospheric Pollutants II: Vertical transport experiment using MM5)

  • 남재철;황승언;박순웅
    • 대기
    • /
    • 제14권4호
    • /
    • pp.3-18
    • /
    • 2004
  • Neglecting the vertical transport from the surface, most of the previous studies on the long-range transport of pollutants have only considered the horizontal transport caused by the free atmosphere wind. I used a three dimensional numerical model, MM5 (The fifth generation Penn State Univ./NCAR Mesoscale Model) for the simulation of vertical transport of pollutants and investigated the mechanism of the vertical transport of atmospheric pollutants between planetary boundary layer(PBL) and free atmosphere by fronts. From the three dimensional simulation of MM5, the amount of pollutants transport from PBL to free atmosphere is 48% within 18 hour after the development of front, 55% within 24 hour, and 53% within 30 hour. The ratios of the vertically transported pollutant for different seasons are 62%, 60%, 54%, and 43% for spring, summer, fall, and winter, respectively. The most active areas for the vertical transport are the center of low pressure and the warm sector located east side of cold front, in which the strong upward motion slanted northward occurs. The horizontal advection of pollutants at the upper level is stronger than at the lower level simply because of the stronger wind speed. The simulation results shows the well known plum shape distribution of pollutants. The high concentration area is located in the center and north of the low pressure system, while the second highest concentration area is in the warm sector. It is shown that the most important mechanism for the vertical transport is vertical advection, while the vertical diffusion process plays an important role in the redistribution of pollutants in the PBL.

수직한 수송관 내부의 캡슐 이송 (Transport of a capsule immersed in a vertical pipe)

  • 김태홍;박렬;정준호;김원정
    • 한국가시화정보학회지
    • /
    • 제17권1호
    • /
    • pp.19-25
    • /
    • 2019
  • We report a study on the dynamics of the transport of a capsule immersed in a vertical pipe. Techniques to convey objects through liquid flow pipes using a hydraulic mean are used to transport sludge and hazardous materials. For the better understanding of the techniques, we developed a theoretical model to predict the transport speed of a cylindrical capsule in a vertical pipe. The comparison of the model prediction with the experiments shows that our model using the lubrication approximation precisely describes the experimental observations in cases where the gap between the capsule and pipe wall is sufficiently small. Our study suggests parameters to control the falling speed and thus enable an accurate control of the capsule speed in hydraulic transport systems.

The Role of Fronts on the Vertical Transport of Atmospheric Pollutants (2-D model)

  • Nam, Jae-Cheol
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.65-68
    • /
    • 2003
  • A quantitative study of the amount of air transported between the boundary layer and the free atmosphere is important for understanding air quality and upper tropospheric ozone, which is a greenhouse gas. Frontal systems are known to be an effective mechanism for the vertical transport of pollutants. Numerical experiments have been performed with a simple two-dimensional front model to simulate vertical transport of trace gases within developing cold fronts. Three different trace gases experiments have been done numerically according to the different initial fields of trace gases such as aerosol, ozone and $H_2O_2$. Trace gas field tilts to the east while the front tilts to the west. Aerosol simulation shows that pollutants can be transported out of the boundary to altitudes of about 10 km. The stratospheric ozone is brought downwards in a tropopause fold behind of the frontal surface. The meridional gradient in trace gas ($H_2O_2$) can cause a complicate structure in the trace field by the meridional advection.

  • PDF

해상 폐기물매립지 연직차수벽체 근입심도에 따른 오염물질 이동특성 분석 (Analysis on Contaminant Transport according to the Embedded Depth of Vertical Barrier of Offshore Landfill)

  • 박해용;오명학;권오순
    • 한국지반환경공학회 논문집
    • /
    • 제17권8호
    • /
    • pp.29-37
    • /
    • 2016
  • 해상처분장에서 내부 오염물질의 외부 유출을 방지하기 위하여 연직차수벽체가 설치된다. 연직차수벽체가 오염물질의 이동을 효과적으로 차단하기 위해서는 연직차수벽체가 해저지반의 적정 근입깊이까지 설치되어야 한다. 본 연구에서는 연직차수벽체 근입심도에 따른 해저지반을 통한 침투 및 오염물질 이동특성을 분석하기 위하여 2차원 유한요소해석 프로그램인 SEEP/W를 이용한 침투해석과 3차원 유한차분해석 프로그램인 Visual Modflow를 이용한 오염물질 이동해석을 수행하였다. 수치해석결과, 연직차수벽체는 저투수성 지반으로 일정 깊이 이상 근입되면 오염물질 유출방지 효과를 갖는 것으로 나타났다. 따라서 경제적인 연직차수벽체 설계를 위해서는 오염물질 이동을 차단할 수 있는 효과적인 최소 근입심도를 산정하여 적용하는 것이 효과적일 것으로 판단된다.

Effect of Nonuniform Vertical Grid on the Accuracy of Two-Dimensional Transport Model

  • Lee, Chung-Hui;Cheong, Hyeong-Bin;Kim, Hyun-Ju;Kang, Hyun-Gyu
    • 한국지구과학회지
    • /
    • 제39권4호
    • /
    • pp.317-326
    • /
    • 2018
  • Effect of the nonuniform grid on the two-dimensional transport equation was investigated in terms of theoretical analysis and finite difference method (FDM). The nonuniform grid having a typical structure of the numerical weather forecast model was incorporated in the vertical direction, while the uniform grid was used in the zonal direction. The staggered and non-staggered grid were placed in the vertical and zonal direction, respectively. Time stepping was performed with the third-order Runge Kutta scheme. An error analysis of the spatial discretization on the nonuniform grid was carried out, which indicated that the combined effect of the nonuniform grid and advection velocity produced either numerical diffusion or numerical adverse-diffusion. An analytic function is used for the quantitative evaluation of the errors associated with the discretized transport equation. Numerical experiments with the non-uniformity of vertical grid were found to support the analysis.

MERRA-2 재분석자료를 활용한 적도 대류권계면층의 오존 수송 및 계절변동성 분석 (Analysis of the Ozone Transport and Seasonal Variability in the Tropical Tropopause Layer using MERRA-2 Reanalysis Data)

  • 류호선;김주완
    • 대기
    • /
    • 제30권1호
    • /
    • pp.91-102
    • /
    • 2020
  • MERRA-2 ozone and atmospheric data are utilized to test the usefulness of reanalysis-based tracer transport analysis for ozone in the tropical tropopause layer (TTL). Transport and mixing processes related to the seasonal variation of TTL ozone are examined using the tracer transport equation based on the transformed Eulerian mean, and the results are compared to previously proposed values from model analyses. The analysis shows that the seasonal variability of TTL ozone is mainly determined by two processes: vertical mean transport and horizontal eddy mixing of ozone, with different contributions in the Northern and Southern Hemispheres. The horizontal eddy mixing process explains the major portion of the seasonal cycle in the northern TTL, while the vertical mean transport dominates in the southern TTL. The Asian summer monsoon likely contributes to this observed difference. The ozone variability and related processes in MERRA-2 reanalysis show qualitatively similar features with satellite- and model-based analyses, and it provides advantages of fine-scale analyses. However, it still shows significant quantitative biases in ozone budget analysis.

연직수문의 퇴적토 배출특성에 관한 실험적 연구 (An Experimental Study on the Sediment Transport Characteristics Through Vertical Lift Gate)

  • 이지행;최흥식
    • Ecology and Resilient Infrastructure
    • /
    • 제5권4호
    • /
    • pp.276-284
    • /
    • 2018
  • 하단배출 형태의 연직수문을 대상으로 퇴적토 배출특성에 따른 두부침식 거리비, 퇴적토 이동거리와 이동량을 분석하기 위해 수리 모형실험과 차원해석을 수행하였다. Froude 수와 배출특성의 상관관계를 도식화하고, 퇴적토 배출특성을 지배하는 무차원 매개변수에 의한 다중회귀식을 제안하였다. 두부침식거리, 퇴적토 이동거리와 이동량에 대한 각 다중회귀 분석식의 결정계수는 각각 0.618, 0.632, 0.866으로 높게 나타났다. 개발한 퇴적토 배출특성식의 사용성을 평가하기 위해 실제 측정값과 회귀분석식에 의해 계산된 값의 95%의 예측 신뢰구간 분석을 수행하였고, 두부침식거리, 퇴적토 이동거리와 이동량에 대한 예측의 정확도 분석차원의 NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square)와 MAPE (mean absolute percentage error)는 적절한 것으로 판단되었다.

DEVELOPMENT OF INTERFACIAL AREA TRANSPORT EQUATION

  • ISHII MAMORU;KIM SEUNGJIN;KELLY JOSEPH
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.525-536
    • /
    • 2005
  • The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or chum-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to chum-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical fir-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired In vertical co-current downward air-water two-phase flow through round pipes of two different sizes.

2차원 광화학수송모델을 이용한 포항지역의 1995-1996년 기간동안 오존의 연직 프로파일 및 전량 추정 (Estimation of Vertical Profiles and Total Amount of Ozone Using Two-Dimensional Photochemical Transfer Model During the Period of 1995-1996 at Pohang)

  • 문윤섭
    • 한국대기환경학회지
    • /
    • 제22권3호
    • /
    • pp.271-285
    • /
    • 2006
  • A two-dimensional photochemical transport model (2D PTM) is simulated to describe the transport and chemical reaction of ozone related to aerosols in the troposphere and stratosphere. The vertical profiles and total amounts of ozone, which are advected by both residual Eulerian circulation and the adiabatic circulation under certain circumstance, have been compared with the observation data such as ozonesondes, Brewer spectrometer, the Upper Atmosphere Research Satellite (UARS), and the Total Ozone Mapping Spectrophotometer (TOMS). As a result, we find that the observed distribution of ozone Is adequately reproduced in the model at middle and high latitude in the Northern Hemisphere as well as at Phang ($36^{\circ}\;02'N,\;129^{\circ}\;23'E$) in South Korea. In particular, the 2D PTM is well simulated in the ozone decrease due to the Pinatubo volcanic eruption in 1991. However, ozone mixing ratio are more underestimated than those of UARS and ozonesondes, because are very sensitive to the latitude of transport across the tropopause associated with both Rummukainen errors and off-line model. Relative mean bias errors and relative root mean square errors of ozone calculations using the 2D PTM are shown within${\pm}10%$, respectively.