• Title/Summary/Keyword: vertical shear

Search Result 920, Processing Time 0.023 seconds

A Possible Relation of Pacific Decadal Oscillation with Weakened Tropical Cyclone Activity over South Korea (한국에 영향을 미치는 약해진 열대저기압 활동과 태평양 10년 주기 진동과의 관계)

  • Chang, Minhee;Park, Doo-Sun R.;Kim, Dasol;Park, Tae-Won
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • Although tropical cyclones with wind speeds weaker than 17 ms-1 (weak tropical cyclones: WTCs) can cause significant damage, particularly over the Seoul metropolitan area, only a few studies have focused on WTC activity over South Korea. In this study, we found that WTC activity is likely associated with the Pacific Decadal Oscillation (PDO). During the negative phases of the PDO, landfall frequency of WTCs increased significantly compared to the positive phases at 95% confidence level. When related to the negative phases of the PDO, a positive relative vorticity anomaly is found in the northern sector of the western North Pacific while a negative relative vorticity anomaly and enhanced vertical wind shear prevail in the southern sector of the WNP. These factors are favorable for the northward shift of the genesis location of tropical cyclones on average, thereby reducing the total lifetime of WTCs. Moreover, a high-pressure anomaly over the Japanese islands would shift a tropical cyclone track westward in addition to the landfall location. Consequently, the effects of the topographical friction and the Yellow Sea Bottom Cold Water on a tropical cyclone may increase. These conditions could result in a weaker lifetime maximum intensity and landfall intensity, ultimately resulting in WTCs becoming more frequent over South Korea during the negative phases of the PDO.

Evaluation of Inertial Interaction of a Multi-degree-of-freedom Structure during a Large-scale 1-g Shaking Table Test (대형 진동대 실험을 이용한 다자유도 구조물의 관성 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.17-28
    • /
    • 2022
  • The effect of the soil-structure interaction (SSI) on has been recently evaluated in shaking table tests. However, most of these tests were conducted on single-degree-of-freedom (SDOF) superstructures and a single-pile. This study investigates the inertial interaction effect of a multi-degree-of-freedom (MDOF) superstructure system with a group piles on a large-scale shaking table test. Whereas the SDOF superstructure system shows a single-frequency amplification tendency, the MDOF superstructure system exhibited amplification tendencies of the acceleration phase and frequency responses for multiple frequencies. In addition, the amplification phenomenon between the footing and the column-type superstructure exceeded that between the footing and the wall-type superstructure, indicating a greater inertial interaction effect of the column-type superstructure. The relationship between shear force and inertial force, the relative vertical and horizontal displacements on the footing was figured out. Also, the ananlysis of dynamic p-y curve at each depth was conducted. In summary, the MDOF and SDOP superstructure systems exhibited different behaviors and the column-type superstructure exerted a higher interaction effect than the wall-type superstructure.

The Design and Numerical Analysis Method of Inclined Self-Supported Wall Using Cement Treated Soil (시멘트혼합처리토를 활용한 경사 자립식 흙막이벽의 설계법과 해석법에 관한 연구)

  • Kang-Han Hong;Byung-Il Kim;Young-Seon Kim;Jin-Hae Kim;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.11-25
    • /
    • 2023
  • In this study, the design and numerical analysis method of the inclined self-supported wall using cement treated soil were studied. In the case of the inclined self-supported wall, the active earth pressure decreased due to the decrease in the coefficient, Ka according to the slope (angle) and the weight decreasing effect, thereby increasing the overall stability. The wall with the slope caused a change in failure mode from overturning to sliding on the excavation side, and the optimal slope was evaluated to be about 10°. Compared to the strength reduction method, the overall stability in numerical analysis results in conservative results in limit equilibrium analysis, so it was found that this method should be attended when designing. As a result of the parameteric study, the stability on bearing capacity and compression failure did not significantly increase above the slope of 10° when the surcharge was small (about 20kPa or less). In the case of cohesion of the backfill, The results similar to numerical analysis were found to consider cohesion. It was evaluated that stability on sliding, oveturning, shear, and tension failure increases in proportion to the thickness of the wall, but there is no significant change in the stability on the bearing capacity and compressive failure regardless of the thickness of the wall above a certain angle (about 10°).

Evaluation of Lateral Flow in Soft Ground under Embankment (성토하부 연약지반의 측방유동 평가)

  • Hong, Won-Pyo;Cho, Sam-Deok;Lee, Jae-Ho;Lee, Kwang-Wu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.93-100
    • /
    • 2006
  • The lateral soil movement in soft grounds undergoing improvement with application of vertical drains is analyzed on the basis of monitoring data at three fields, in which fifty six monitoring sites are located. Based on the investigations, the criterions are suggested to predict the lateral soil movement. In order to predict the lateral soil movement in the improved soft grounds by using the dimensionless parameter R suggested by Marche & Chapuis (1974), it is desirable that the maximum lateral displacement in the soft ground below the toe of embankment should be applied to calculate R instead of the lateral displacement at the toe of embankment. The lateral soil movement may increase rapidly, if the safety factor of slope is less than 1.4 in case of high ratio of H/B (Thickness of soft ground/Embankment width) such as 1.15 or is less than 1.2 in case of low ratio of H/B such as 0.05. Also, the graph suggested by Tschebotarioff (1973), which illustrates the relationship between the maximum height of embankments and the undrained shear strength of soft grounds, can be applied to the evaluation for the possibility of the lateral soil movement due to embankments on soft grounds.

Internal Waves and Surface Mixing Observed by CTD and Echo Sounder in the mid-eastern Yellow Sea (황해 중동부해역에서 CTD와 음향탐지기로 관측한 내부파와 표층 혼합)

  • Lee, Sang-Ho;Choi, Byoung-Ju;Jeong, Woo Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Acoustic backscatter profiles were measured by Eco-sounder along an east-west section in the mid-eastern Yellow Sea and at an anchoring station in the low salinity region off the Keum River estuary in September 2012, with observing physical water property structure by CTD. Tidal front was established around the sand ridge developed in 50 m depth region. Internal waves measured by Eco-sounder during low tide period in the eastern side of the sand ridge were nonlinear depression waves with wave height of 15 m and mean wavelength of 500 m. These waves were interpreted into tidal internal waves that were produced by tidal current flowing over the sand ridge to the southeast. When weakly non-linear soliton model was applied, propagation speed and period of these internal depression wave were 50 m/s and 16~18 min. Red tides by Dinoflagelates Cochlodinium were observed in the sea surface where strong acoustic scattering layer was raised up to 7 m. Hourly CTD profiles taken at the anchoring station off the Keum River estuary showed the halocline depth change by tidal current and land-sea breeze. When tidal current flowed strongly to the northeast during flood period and land-breeze of 7 m/s blew to the west, the halocline was temporally raised up as much as 2 m and acoustic profile images showed a complex structure in the surface layer within 5-m depth: in tens of seconds the declined acoustic structure of strong and weak scattering signals alternatively appeared with entrainment and intrusion shape. These acoustic profile structures in the surface mixed layer were observed for the first time in the coastal sea of the mid-eastern Yellow Sea. The acoustic profile images and turbidity data suggest that relatively transparent low-layer water be intruded or entrained into the turbid upper-layer water by vertical shear between flood current and land breeze-induced surface current.

Tensile Performance of Machine-Cut Dovetail Joint with Larch Glulam (낙엽송집성재를 이용한 기계프리커트 주먹장접합부의 인장성능)

  • Park, Joo-Saeng;Hwang, Kweon-Hwan;Park, Moon-Jae;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • Members used for the Korean traditional joints have been processed by handicraft, especially with domestic red pine species. Dovetail joint is most commonly used in woodworking joinery and traditional horizontal and vertical connections. It is able to be processed much easier to cut by handicraft and machines. However, although it is processed straight forwards, it requires a high degree of accuracy to ensure a snug fit. Also, tenons and mortises must fit together with no gap between them so that the joint interlocks tightly. A few scientific studies on the dovetail joints have been conducted so far. For the effective applications of traditional joints and domestic plantation wood species, dovetail joints were assembled by larch glulam members processed by machine pre-cut. To identify the tensile properties of through dovetail joints, larch glulam with 150 150mm in cross section were prepared. Furthermore, various geometric parameters of dovetai joints such as width, length, and tenon angle, were surveyed. The ends in the mortise was cracked mainly at a low strength level in the control specimens without reinforcements. The maximum tensile strengths of reinforced specimens considering real connections such as capital joint and headpiece on a column, increasedby handicraft, especially with domestic red pine species. Dovetail joint is most commonly used in woodworking joinery and traditional horizontal and vertical connections. It is able to be processed much easier to cut by handicraft and machines. However, although it is processed straight forwards, it requires a high degree of accuracy to ensure a snug fit. Also, tenons and mortises must fit together with no gap between them so that the joint interlocks tightly. A few scientific studies on the dovetail joints have been conducted so far. For the effective applications of traditional joints and domestic plantation wood species, dovetail joints were assembled by larch glulam members processed by machine pre-cut. To identify the tensile properties of through dovetail joints, larch glulam with 150 150mm in cross section were prepared. Furthermore, various geometric parameters of dovetai joints such as width, length, and tenon angle, were surveyed. The ends in the mortise was cracked mainly at a low strength level in the control specimens without reinforcements. The maximum tensile strengths of reinforced specimens considering real connections such as capital joint and headpiece on a column, increased by two times with shear failures on the tenon than the control specimens. The maximum tensile strength was obtained in the specimen of 25 degrees, and no difference was observed in the changes of neck widths.

Experimental Study for Confirmation of Relaxation Zone in the Underground Cavity Expansion (지중 내 공동 확장에 따른 이완영역 확인을 위한 실험적 연구)

  • Kim, Youngho;Kim, Hoyeon;Kim, Yeonsam;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.231-240
    • /
    • 2017
  • Recently, there have been frequent occurrences of ground sink in the urban area, which have resulted in human and material damage and are accompanied by economic losses. This is caused by artificial factors such as soil loss, poor compaction, horizontal excavation due to the breakage of the aged sewage pipe, and lack of water proof at vertical excavation. The ground sink can be prevented by preliminary restoration and reinforcement through exploration, but it can be considered that it is not suitable for urgent restoration by the existing method. In this study, a model experiment was carried out to simulate the in-ground cavities caused by groundwater flow for developing non-excavation urgent restoration in underground cavity and the range of the relaxation zone was estimated by detecting the around the cavity using a relaxation zone detector. In addition, disturbance region and relaxation region were separated by injecting gypsum into cavity formed in simulated ground. The shape of the underground cavity due to the groundwater flow was similar to that of the failure mode III formed in the dense relative density ground due to water pipe breakage in the previous study. It was confirmed that the relaxed region detected using the relaxation zone detector is formed in an arch shape in the cavity top. The length ratio of the relaxation region to the disturbance region in the upper part of the cavity center is 2: 1, and it can be distinguished by the difference in the decrease of the shear resistance against the external force. In other words, it was confirmed that the secondary damage should not occur in consideration of the expandability of the material used as the injecting material in the pre-repair and reinforcement, and various ground deformation states will be additionally performed through additional experiments.

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

Interdecadal Variation of Tropical Cyclone Genesis Frequency over the Western North Pacific (북서태평양에서 열대 저기압 발생빈도의 십년간 변동 특성)

  • Choi, Ki-Seon;Kim, Baek-Jo;Lee, Seong-Lo;Park, Jong-Kil
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.31-39
    • /
    • 2009
  • This study has found that there is a reverse phase with interdecadal variation in temporal variations of tropical cyclone (TC) genesis frequency (TCGF) between Northwest sector and Southeast sector, based on climatological mean tropical cyclone genesis location over the western North Pacific. The TCGF in the Northwest sector has been increased since the mid 1980s (1986-2005), while TCGF in the Southeast sector was higher until the early 1970s (1951-1970). The analysis of a difference between 1986-2005 and 1951-1970 showed results as follows: i) Through the analysis of vertical wind shear (VWS) and sea surface temperature (SST), less VWS and higher SST in the former (latter) period was located in the Northwest (Southeast) sector. ii) In the analysis of TC passage frequency (TCPF), TCs occurred in the Northwest sector frequently passed from east sea of the Philippines, through East China Sea, to Korea and Japan in the latter period, while TCs in the former period frequently has a lot of influences on South China Sea (SCS). In the case of TCs occurred in the Southeast sector, TCs in the west (east), based on $150^{\circ}E$ had a high passage frequency in the latter (former) period. In particular, TCs during the latter period frequently moved toward from the east sea of the Philippines to SCS and southern China. iii) This difference of TCPF between the two periods was characterized by 500 hPa anomalous pressure pattern. Particularly, anomalous cyclonic circulation strengthened over the East Asian continent caused anomalous southerlies along the East Asian coast line from the east sea of the Philippines to be predominate. These anomalous winds served as steering flows that TC can easily move toward same regions.

Dynamic response of segment lining due to train-induced vibration (세그먼트 라이닝의 열차 진동하중에 대한 동적 응답특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.305-330
    • /
    • 2023
  • Unlike NATM tunnels, Shield TBM tunnels have split linings. Therefore, the stress distribution of the lining is different even if the lining is under the same load. Representative methods for analyzing the stress generated in lining in Shield TBM tunnels include Non-joint Mode that does not consider connections and a 2-ring beam-spring model that considers ring-to-ring joints and segment connections. This study is an analysis method by Break-joint Mode. However, we do not consider the structural role of segment lining connections. The effectiveness of the modeling is verified by analyzing behavioral characteristics against vibration loads by modeling with segment connection interfaces to which vertical stiffness and shear stiffness, which are friction components, are applied. Unlike the Non-joint mode, where the greatest stress occurs on the crown for static loads such as earth pressure, the stress distribution caused by contact between segment lining and friction stiffness produced the smallest stress in the crown key segment where segment connections were concentrated. The stress distribution was clearly distinguished based on segment connections. The results of static analysis by earth pressure, etc., produced up to seven times the stress generated in Non-joint mode compared to the stress generated by Break-joint Mode. This result is consistent with the stress distribution pattern of the 2-ring beam-spring model. However, as for the stress value for the train vibration load, the stress of Break-joint Mode was greater than that of Non-joint mode. This is a different result from the static mechanics concept that a segment ring consisting of a combination of short members is integrated in the circumferential direction, resulting in a smaller stress than Non-joint mode with a relatively longer member length.