• 제목/요약/키워드: vertical shear

검색결과 923건 처리시간 0.028초

Optimized stiffener detailing for shear links in eccentrically braced frames

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.35-50
    • /
    • 2021
  • Eccentrically braced frames (EBFs) are utilized as a lateral resisting system in high seismic zones. Links are the primary source of energy dissipation and they are exposed to high deformation, which may lead to buckling. Web stiffeners were introduced to prevent buckling of shear link. AISC 341 provides the required vertical stiffeners for a shear link. In this study, different stiffener configurations were examined. The main objective is to improve the behavior of short links using different stiffener configurations. Pursuant to this goal, a comprehensive numerical study is conducted using ABAQUS. Shear links with different stiffener configurations were subjected to cyclic loading using loading protocol mandated by AISC 341. The results are compared in terms of energy dissipation and shear capacities and rupture index. The proposed stiffener configurations were further verified with different link length ratios, I-shapes and thickness of stiffener. Based on the results, the stiffener configuration with two vertical and two diagonal stiffeners perpendicular to each other is recommended. The proposed stiffener configuration can increase the shear capacity, energy dissipation capacity and the ratio of energy/weight up to 27%, 38% and 30%, respectively. Detailing of the proposed stiffener configuration is presented.

Shear mechanism of steel fiber reinforced concrete deep coupling beams

  • Li, Kou;Zhao, Jun;Ren, Wenbo
    • Structural Engineering and Mechanics
    • /
    • 제73권2호
    • /
    • pp.143-152
    • /
    • 2020
  • Deep coupling beams are more prone to suffer brittle shear failure. The addition of steel fibers to seismic members such as coupling beams can improve their shear performance and ductility. Based on the test results of steel fiber reinforced concrete(SFRC) coupling beams with span-to-depth ratio between 1.5 and 2.5 under lateral reverse cyclic load, the shear mechanism were analyzed by using strut-and-tie model theory, and the effects of the span-to-depth ratio, compressive strength and volume fraction of steel fiber on shear strengths were also discussed. A simplified calculation method to predict the shear capacity of SFRC deep coupling beams was proposed. The results show that the shear force is mainly transmitted by a strut-and-tie mechanism composed of three types of inclined concrete struts, vertical reinforcement ties and nodes. The influence of span-to-depth ratio on shear capacity is mainly due to the change of inclination angle of main inclined struts. The increasing of concrete compressive strength or volume fraction of steel fiber can improve the shear capacity of SFRC deep coupling beams mainly by enhancing the bearing capacity of compressive struts or tensile strength of the vertical tie. The proposed calculation method is verified using experimental data, and comparative results show that the prediction values agree well with the test ones.

RC조 건축물의 구조시스템에 따른 수직진동 전달 특성 비교 (Characteristics of Vertical Vibration Transfer according to RC Structure Systems)

  • 전호민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.196-201
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions on the rahmen building structures and the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the heel-drop excitation experiments were conducted several times on the two type building structures. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vortical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs and excitation forces and are effected the shear wall on the path of the vibration transfer.

  • PDF

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • 제15권5호
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.

Experimental investigation of longitudinal shear behavior for composite floor slab

  • Kataoka, Marcela N.;Friedrich, Juliana T.;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.351-362
    • /
    • 2017
  • This paper presents an experimental study on the behavior of composite floor slab comprised by a new steel sheet and concrete slab. The strength of composite slabs depends mainly on the strength of the connection between the steel sheet and concrete, which is denoted by longitudinal shear strength. The composite slabs have three main failures modes, failure by bending, vertical shear failure and longitudinal shear failure. These modes are based on the load versus deflection curves that are obtained in bending tests. The longitudinal shear failure is brittle due to the mechanical connection was not capable of transferring the shear force until the failure by bending occurs. The vertical shear failure is observed in slabs with short span, large heights and high concentrated loads subjected near the supports. In order to analyze the behavior of the composite slab with a new steel sheet, six bending tests were undertaken aiming to provide information on their longitudinal shear strength, and to assess the failure mechanisms of the proposed connections. Two groups of slabs were tested, one with 3000 mm in length and other with 1500 mm in length. The tested composite slabs showed satisfactory composite behavior and longitudinal shear resistance, as good as well, the analysis confirmed that the developed sheet is suitable for use in composite structures without damage to the global behavior.

2-프레임 PTV를 이용한 수직벽 주위 유동장 해석 (Velocity Field Measurement of Flow Around a Surface-Mounted Vertical Fence Using the Two-Frame PTV System)

  • 백승조;이상준
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1340-1346
    • /
    • 1999
  • The turbulent shear flow around a surface-mounted vertical fence was investigated using the two-frame PTV system. The Reynolds number based on the fence height(H) was 2950. From this study, it is revealed that at least 400 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 100 field data are sufficient for the time-averaged mean velocity information. Various turbulence statistics such as turbulent intensities, turbulence kinetic energy and Reynolds shear stress were calculated from 700 instantaneous velocity vector fields. The fence flow has an unsteady recirculation region behind the fence, followed by a slow relaxation to the flat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about 11.2H. There exists a region of negative Reynolds shear stress near the fence top due to the highly convex (stabilizing) streamline-curvature of the upstream flow. The large eddy structure in the separated shear layer seems to have significant influence on the development of the separated shear layer and the reattachment process.

Structural system identification including shear deformation of composite bridges from vertical deflections

  • Emadi, Seyyedbehrad;Lozano-Galant, Jose A.;Xia, Ye;Ramos, Gonzalo;Turmo, Jose
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.731-741
    • /
    • 2019
  • Shear deformation effects are neglected in most structural system identification methods. This assumption might lead to important errors in some structures like built up steel or composite deep beams. Recently, the observability techniques were presented as one of the first methods for the inverse analysis of structures including the shear effects. In this way, the mechanical properties of the structures could be obtained from the nodal movements measured on static tests. One of the main controversial features of this procedure is the fact that the measurement set must include rotations. This characteristic might be especially problematic in those structures where rotations cannot be measured. To solve this problem and to increase its applicability, this paper proposes an update of the observability method to enable the structural identification including shear effects by measuring only vertical deflections. This modification is based on the introduction of a numerical optimization method. With this aim, the inverse analysis of several examples of growing complexity are presented to illustrate the validity and potential of the updated method.

C형 접합부를 이용한 프리캐스트 콘크리트 전단벽의 거동 (Behavior of Precast Concrete Shear Walls with C-Type Connections)

  • 임우영;홍성걸
    • 콘크리트학회논문집
    • /
    • 제22권4호
    • /
    • pp.461-472
    • /
    • 2010
  • 이 논문은 새로운 수직 접합부를 가진 프리캐스트 벽체의 거동에 관한 연구이다. PC 벽체를 이용한 리모델링 건설을 위해서는 효율적이고 경제적인 조립 방법이 필요하다. C형 수직 접합부를 가진 PC 벽체 시스템은 수직방향의 벽체 사이의 휨모멘트를 전달하도록 하고, 반면에 벽체 중심에 있는 전단키는 전단력을 부담하도록 하였다. 제안된 수직 접합부는 벽체 단부에 서로 다른 방향의 슬롯 때문에 조립이 용이하다. 횡력을 받는 일자형 PC 벽체 시스템을 강성, 강도 그리고 파괴 모드에 대해 기존의 RC 벽체와 비교하였으며, 힘과 처짐과의 관계와 접합부의 조기파괴에 관해 알아보았다. 실험 결과 벽체 단부에 설치된 수직 철근이 먼저 항복하였고, 최종 변형은 접합부의 조기 파괴에 의해 결정되었다. 그리고 벽체에서 효과적인 전단력 전달을 위한 대각선 철근은 그다지 효과적이지 않았다. 단면 해석을 통해 구한 강도와 변형은 실험값과 대체로 일치하였다. 특히, 개폐거동에 의한 변형이 가장 큰 비율을 차지하였다.

인공용승구조물 설치에 의한 유동변화(II) (Variation of Current by the Building of Artificial Upwelling Structure(II))

  • 황석범;김동선;배상완
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2007년도 추계학술발표회
    • /
    • pp.9-14
    • /
    • 2007
  • 한국 남해안 거제도 앞바다에 구축된 인공용승구조물로 인하여 발생하는 유동 변화를 파악하기 위해 ADCP(Acoustic Doppler Current Profiler)를 이용한 정선관측을 2003년 하계 및 추계에 실시하였다. 관측 결과 하계에는 수심 약 $30{\sim}40$ m를 기준으로 상층과 하층의 유동분포가 상이한 경계수심이 존재하였으며, 추계에는 이러한 현상이 3층 구조로 나타났다. 또한 연직유동성분은 수심과 지역에 따라 상승류와 하강류가 번갈아 분포하였으며 이러한 현상은 관측범위를 확장하였을 때도 유사한 유동분포를 보이고 있다. 한편 ADCP의 수평유동성분을 이용하여 계산된 연직전단(vertical shear) 및 상대와도(relative vorticity)는 상승류가 발생하는 지역에서 연직전단은 큰 값을 나타내었고, 상대와도는 +값으로 상승류의 방향을 나타내었다. 이러한 결과는 유동성분의 상승류 분포역과 유사하게 나타났다.

  • PDF

Experimental Study on Low Cyclic Loading Tests of Steel Plate Shear Walls with Multilayer Slits

  • Lu, Jinyu;Yu, Shunji;Qiao, Xudong;Li, Na
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1210-1218
    • /
    • 2018
  • A new type of earthquake-resisting element that consists of a steel plate shear wall with slits is introduced. The infill steel plate is divided into a series of vertical flexural links with vertical links. The steel plate shear walls absorb energy by means of in-plane bending deformation of the flexural links and the energy dissipation capacity of the plastic hinges formed at both ends of the flexural links when under lateral loads. In this paper, finite element analysis and experimental studies at low cyclic loadings were conducted on specimens with steel plate shear walls with multilayer slits. The effects caused by varied slit pattern in terms of slit design parameters on lateral stiffness, ultimate bearing capacity and hysteretic behavior of the shear walls were analyzed. Results showed that the failure mode of steel plate shear walls with a single-layer slit was more likely to be out-of-plane buckling of the flexural links. As a result, the lateral stiffness and the ultimate bearing capacity were relatively lower when the precondition of the total height of the vertical slits remained the same. Differently, the failure mode of steel plate shear walls with multilayer slits was prone to global buckling of the infill steel plates; more obvious tensile fields provided evidence to the fact of higher lateral stiffness and excellent ultimate bearing capacity. It was also concluded that multilayer specimens exhibited better energy dissipation capacity compared with single-layer plate shear walls.