• Title/Summary/Keyword: vertical pile capacity

Search Result 112, Processing Time 0.027 seconds

A Study on the Vertical Bearing Capacity of Batter Piles Subjected to Vertical Load (연직하중을 받는 경사말뚝의 연직지지력에 관한 연구)

  • 성인출;이민희;최용규;권오균
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.49-55
    • /
    • 2003
  • In this study, based on the relationship of the vertical force - settlement of batter piles obtained by pressure chamber model tests, the vertical bearing capacity of vertical and batter piles according to the increase of pile inclination was analyzed. A model open - ended steel pipe pile with the inclination of 5$^\circ$, 10$^\circ$ and 15$^\circ$ was driven into saturated fine sand with relative density of 50 %, and the static compression load tests were performed under each confining pressure of 35, 70 and 120 kPa in pressure chamber. The vertical bearing capacity of pile obtained from pressure chamber tests increased with the pile inclination. In the case of the inclination of 5$^\circ$, 10$^\circ$, 15$^\circ$, increasing ratios of pile bearing capacity were 111, 121, 127 ~ 140 % of vertical bearing capacity respectively. In the case of the inclination of above 20$^\circ$, the model tests could not be performed because of pile of pile head during compressive loading on the pile head.

Large-scale pilot test study on bearing capacity of sea-crossing bridge main pier pile foundations

  • Zhang, Xuefeng;Li, Qingning;Ma, Ye;Zhang, Xiaojiang;Yang, Shizhao
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.201-212
    • /
    • 2014
  • Due to the sea-crossing bridge span is generally large and main pier pile foundations are located in deep water and carry large vertical load, sea-crossing bridge main pier pile foundations bearing mechanism and load deformation characteristics are still vague. Authors studied the vertical bearing properties of sea-crossing bridge main pier pile foundations through pilot load tests. Large tonnage load test of Qingdao Bay Bridge main pier pile program is designed by using per-stressed technique to optimize the design of anchor pile reaction beam system. Test results show that the design is feasible and effective. This method can directly test bearing capacity of main pier pile foundations, and analysis bearing behaviors from test results of sensors which embedded in the pile. Through test study the vertical bearing properties of main pier pile foundation and compared with the generally short pile, author summarized the main pier pile foundations vertical bearing capacity and the main problem of design and construction which need to pay attention, and provide a reliable basis and experience for sea-crossing bridge main pier pile foundations design and construction.

Case study on the prediction of vertical and horizontal pile capacity using pressuremter test results (PMT결과를 이용한 말뚝의 연직 및 수평지지력 산정 사례 연구)

  • 김동철;최용규;정성기;정창규;이광욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.431-438
    • /
    • 1999
  • Vertical congressive and horizontal pile load tests were performed to a instrumented large diameter (D : 1,000 mm) drilled shaft. A drilled shaft was penetrated into the weathered soil and weathered rock. PMT was done for evaluation of properties for these strata. It was expected to be difficult to get undisturbed samples of weathered soils and rocks. Thus. PMT was done at the several selected depths. In those strata, to prevent the test bore hole from collapsing, bentonite slurry was used for making the test bore hole. In this study. soil properties was evaluated by means of PMT results and estimating method (direct method, the Memard method) of vertical pile capacity and horizontal pile behaviors were summarized. Also, vertical and horizontal pile capacity were calculated using PMT and pile load test results.

  • PDF

Estimation on End Vertical Bearing Capacity of Double Steel-Concrete Composite Pile Using Numerical Analysis (수치해석을 이용한 이중 강-콘크리트 합성말뚝 연직지지력 평가)

  • Jeongsoo, Kim;Jeongmin, Goo;Moonok, Kim;Chungryul, Jeong;Yunwook, Choo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.5-15
    • /
    • 2022
  • Conventionally, because evaluation methods of the bearing capacity for double steel pipe-concrete composite pile design have not been established, the conventional vertical bearing capacity equations for steel hollow pile are used. However, there are severe differences between the predictions from these equations, and the most conservative one among vertical bearing capacity predictions are conventionally adopted as a design value. Consequently, the current prediction method for vertical bearing capacity of composite pile prediction composite pile causes design reliability and economical feasibility to be low. This paper investigated mechanical behaviors of a new composite pile, with a cross-section composed of double steel pipes filled with concrete (DSCT), vertical bearing capacities were analyzed for several DSCT pile conditions. Axisymmetric finite element models for DSCT pile and surrounding ground were created and they were used to analyze effects on behaviors of DSCT pile pile by embedding depth, stiffness of plugging material at pile tip, height of plugging material at pile tip, and rockbed material. Additionally, results from conventional design prediction equations for vertical bearing capacity at steel hollow pile tip were compared with that from numerical results, and the use of the conventional equations for steel hollow pile was examined to apply to that for DSCT pile.

Uplift capacity of single vertical belled pile embedded at shallow depth

  • Jung-goo Kang;Young-sang Kim;Gyeongo Kang
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.165-179
    • /
    • 2023
  • This study investigates the uplift capacity of a single vertical belled pile buried at shallow depth in dry sand. The laboratory model experiments are conducted with different pile-tip angles and relative densities. In addition, image and FEM analyses are performed to observe the failure surface of the belled pile for different pile-tip angles and relative densities. Accordingly, the uplift capacity and failure angle in the failure surface of the belled pile were found to depend on the belled pile-tip angle and relative density. A predictive model for the uplift capacity of the belled pile was proposed considering the relative density and belled pile-tip angle based on a previous limit equilibrium equation. To validate the applicability of the proposed model, the values calculated using the proposed and previous models were compared to those obtained through a laboratory model experiment. The proposed model had the best agreement with the laboratory model experiment.

Case Study on the Vertical Capacity of the Repaired Large Diameter Rock-Socketed Stool Pipe Pile (보수된 대구경 암반 소켈강관말뚝의 연직지지력에 관한 사례연구)

  • 최용규;김승종;김병희;이광욱;김상일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.185-192
    • /
    • 1999
  • It had found that, as a result of cross-hole tonic logging test, concrete was not filled partially within the bottom 2.0 m of the large diameter (Ø= 2,500mm) rock socketed pile, MP20-P11(socket diameter (Ø= 2,200mm), which was a pile among piles group supporting a pier of Kwangan Grand Bridge. The pile was repaired by the combined cement grout injected through the pipes for the cross-hole sonic logging test and the bore holes for core samples. A month after the cement grouting, repairing was checked by coring and cross-hole sonic logging then 3 times of grouting and 2 times of coring were, in turns, peformed, then repairing was completed successfully. The vertical compressive capacity of the repaired large diameter socketed pile was evaluated by several formulas and software ROCKET, and was more conservative than design load (1,882 ton) of MP20-P11. It is expected that, in the case of the battered socketed piles, it could be more reasonable to analyze the behaviors of a battered pile using 3-D model. A 3-D analysis will be peformed in the future study.

  • PDF

Prediction on Ultimate Vertical and Horizontal Bearing Capacity of Steel Pipe Piles by Means of PAR (PAR에 의한 강관 말뚝의 극한 수직 및 수평 지지력 예측)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.13-24
    • /
    • 1997
  • A predicting method for ultimate vertical and horizontal bearing capacity by means of PAR(Pile Analysis Routines) was suggested. Based on the static pile load test data, case studies by means of PAR were performed. Ultimate pile capacity predicted by PAR was within 15% error range of that determined by stairs pile load tests. Also, the results of static pile load test, statnamic tests and PDA data performed on pipe piles were compared and, by using PAR, ultimate pile capacity was determined. Distributions of atrial pile load could be predicted and load transfer analysis could be done approximately by those distributions.

  • PDF

Experimental study on the horizontal bearing characteristics of long-short-pile composite foundation

  • Chen-yu Lv;Yuan-cheng Guo;Yong-hui Li;An-di Hu-yan;Wen-min Yao
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.341-352
    • /
    • 2023
  • Long-short pile composite foundations bear both vertical and horizontal loads in many engineering applications. This study used indoor model tests to determine the horizontal bearing mechanism of a composite foundation with long and short piles under horizontal loads. A custom experimental device was developed to prevent excessive eccentricity of the vertical loading device caused by the horizontal displacement. ABAQUS software was used to analyze the influence of the load size and cushion thickness on the horizontal bearing mechanism. The results reveal that a large vertical load leads to soil densification and increases the horizontal bearing capacity of the composite foundation. The magnitude of the horizontal displacement of the pile and the horizontal load borne by the pile are related to the piles' positions. Due to different pile lengths, the long piles exhibit long pile effects and experience bending deformation, whereas the short piles rotate around a point (0.2 L from the pile bottom) as the horizontal load increases. Selecting a larger cushion thickness significantly improves the horizontal load sharing capacity of the soil and reduces the horizontal displacement of the pile top.

Utilization of Waste Concrete as Vertical Drain Material (연직배수재료로 폐콘크리트 활용에 관한 기초연구)

  • 이용수;정하익;김우성;권용완
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.571-576
    • /
    • 2001
  • This paper presents the utilization of waste concrete as vertical drain material. The materials used as vertical drain material were the waste concrete, obtained from the demolished apartments or concrete structure and sand. In this study, laboratory model test was performed to investigate settlement and bearing capacity between sand compaction pile and waste concrete compaction pile. The results of laboratory model test showed that the improvement efficiency of soft ground by waste concrete compaction pile was better than sand compaction pile.

  • PDF

An Experimental Study on the Behavior of Open-ended Pipe Piles Ggroup to the Simulated Seaquake (해진시 개단무리말뚝의 거동에 관한 모형실험 연구)

  • 남문석;최용규;김재현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.447-454
    • /
    • 1999
  • The compressive capacity and the soil plugging resistance of single open-ended pipe pile were completely decreased in the previous study on the behavior of shorter single pile during simulated seaquake induced by the vertical component of earthquake. But the capacity of single open-ended pipe pile with greater penetration and the capacity of piles group with shorter penetration were expected to be stable after seaquake motion. In this study, first, 2-piles or 4-piles are driven into the calibration chamber included in saturated fine medium sand with several simulated penetrations, and the compressive load test for each piles group was performed. Then, about 95 % compressive load of the ultimate capacity was applied on the pile head during the simulated seaquake motion. Finally, In confirm the reduction of pile capacity during the simulated seaquake motion, the compressive load test for each single pile or piles group after seaquake motion was performed. During the simulated seaquake, the compressive capacity of open-ended pipe piles with greater penetration ( 〉about 27 m) was not degraded even in deep sea deeper than 220 m and soil plug within open-ended pipe pile installed in deep sea was stable after seaquake motion. Also, in the case of 2-piles or 4-pile groups, the compressive capacity after seaquake motion was not degraded at all regardless of pile penetration depth beneath seabed, sea water depth and seaquake frequency.

  • PDF