• Title/Summary/Keyword: vertical grid

Search Result 186, Processing Time 0.027 seconds

A Simple Mlodel for Dispersion in the Stable Boundary Layer

  • Sung-Dae Kang;Fuj
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 1992
  • Handling the emergency problems such as Chemobyl accident require real time prediction of pollutants dispersion. One-point real time sounding at pollutant source and simple model including turbulent-radiation process are very important to predict dispersion at real time. The stability categories obtained by one-dimensional numerical model (including PBL dynamics and radiative process) are good agreement with observational data (Golder, 1972). Therefore, the meteorological parameters (thermal, moisture and momentum fluxes; sensible and latent heat; Monin-Obukhov length and bulk Richardson number; vertical diffusion coefficient and TKE; mixing height) calculated by this model will be useful to understand the structure of stable boundary layer and to handling the emergency problems such as dangerous gasses accident. Especially, this simple model has strong merit for practical dispersion models which require turbulence process but does not takes long time to real predictions. According to the results of this model, the urban area has stronger vertical dispersion and weaker horizontal dispersion than rural area during daytime in summer season. The maximum stability class of urban area and rural area are "A" and "B" at 14 LST, respectively. After 20 LST, both urban and rural area have weak vertical dispersion, but they have strong horizontal dispersion. Generally, the urban area have larger radius of horizontal dispersion than rural area. Considering the resolution and time consuming problems of three dimensional grid model, one-dimensional model with one-point real sounding have strong merit for practical dispersion model.al dispersion model.

  • PDF

SLODAR System Development for Vertical Atmospheric Disturbance Profiling at Geochang Observatory

  • Ji Yong Joo;Hyeon Seung Ha;Jun Ho Lee;Do Hwan Jung;Young Soo Kim;Timothy Butterley
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.30-37
    • /
    • 2024
  • Implemented at the Geochang Observatory in South Korea, our slope detection and ranging (SLO-DAR) system features a 508 mm Cassegrain telescope (f /7.8), incorporating two Shack-Hartmann wave-front sensors (WFS) for precise measurements of atmospheric phase distortions, particularly from nearby binary or double stars, utilizing an 8 × 8 grid of sampling points. With an ability to reconstruct eight-layer vertical atmospheric profiles, the system quantifies the refractive index structure function (Cn2) through the crossed-beam method. Adaptable in vertical profiling altitude, ranging from a few hundred meters to several kilometers, contingent on the separation angle of binary stars, the system operates in both wide (2.5 to 12.5 arcminute separation angle) and narrow modes (11 to 15 arcsecond separation angle), covering altitudes from 122.3 to 611.5 meters and 6.1 to 8.3 kilometers, respectively. Initial measurements at the Geochang Observatory indicated Cn2 values up to 181.7 meters with a Fried parameter (r0) of 8.4 centimeters in wide mode and up to 7.8 kilometers with an r0 of 8.0 centimeters in narrow mode, suggesting similar seeing conditions to the Bohyun Observatory and aligning with a comparable 2014-2015 seeing profiling campaign in South Korea.

Numerical Simulation of Vertical Wall Fires I. Turbulent Natural Convection Along Vertical Wall (수직벽화재의 수치 시뮬레이션 I. 수직벽 난류자연대류)

  • Park, Woe-Chul;Trouve, Arnaud
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.181-187
    • /
    • 2008
  • Numerical simulation of natural convection along a vertical wall was carried out to evaluate the computational fluid dynamics simulator, which is to be utilized for study of vertical wall fires. The computed velocity and temperature profiles were compared with measurements over the turbulent boundary layer formed along the wall of 4m high and constant temperature. It fumed out that the simulator with default parameters failed to predict the turbulent natural convection showing the boundary layer flow laminar. The grid size $\Delta$x=5mm, ${\Delta}y={\Delta}z=10mm$ and Smagorinsky constant of the large eddy simulation $C_s$=0.1 were chosen through parametric investigations. Though turbulent mixing was not enough, the velocity distribution near wall, peak velocity, and temperature profile in the turbulent boundary layer agreed well with the measurements.

Generalization of Vertical Plume Despersion in the concective Boundary Layer at Long Distances on Mesoscale (중거리에서 대류경계층 연직방향 plume 확산의 일반화)

  • 서석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 2000
  • In order to genralize the vertical dispersion of plume at long distances on mesoscale over complex terrain dispersion coefficients data have been obtained systematically according to lapsed time after release by using a composite turbulence water tank that simulates convective boundary layer. Dispersion experiments have been carried out for various combined conditions of thermal turbulence intensity mechanical turbulence intensity and plume release height at slightly to moderately unstable conditions. Results of tracer dispersion experiments conducted using water tank camera and image processing system have been converted into atmospheric dispersion data through the application of similarity law. The equation $\sigma$z/Zi=aX/(b+c X2)0.5 where $\sigma$2; vertical dispersion coefficient zi : mixing height X : dimen-sionaless downwind distance was confirmed to be an appropriate and general equation for expressing $\sigma$2 variation with turbulence intensity and plume release height, The value of "a" was found to be principally affected by mechanical turbulence intensity and that of "b" by mechanical turbulence intensity and release height. It was confirmed that the magnitude of "c" varies with release height. Results of water tank experiments on the relationship of $\sigma$2 vs downwind distance x have been compared with actual atmospheric dispersion data such as CONDORS data and Bowne's nomogram Operating conditions of a composite turbulence water tank for simulating the field turbulence situations of CONDORS experiments and Bowne's $\sigma$2(x) nomogram for suburban area have also been investigated in terms of water temperature difference between convection water tank and bottom plate heating tank grid plate stroke mixing water depth length scale and velocity scale. Moreover the effect of mechanical turbulence intensity on vertical dispersion has been discussed in the light of release height and downwind distance. height and downwind distance.

  • PDF

The influence of sea surface temperature for vertical extreme wind shear change and its relation to the atmospheric stability at coastal area

  • Geonhwa Ryu;Young-Gon Kim;Dongjin Kim;Sang-Man Kim;Min Je Kim;Wonbae Jeon;Chae-Joo Moon
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.201-213
    • /
    • 2023
  • In this study, the effect of sea surface temperature (SST) on the distribution of vertical wind speed in the atmospheric boundary layer of coastal areas was analyzed. In general, coastal areas are known to be more susceptible to various meteorological factors than inland areas due to interannual changes in sea surface temperature. Therefore, the purpose of this study is to analyze the relationship between sea surface temperature (ERA5) and wind resource data based on the meteorological mast of Høvsøre, the test bed area of the onshore wind farm in the coastal area of Denmark. In addition, the possibility of coastal disasters caused by abnormal vertical wind shear due to changes in sea surface temperature was also analyzed. According to the analysis of the correlation between the wind resource data at met mast and the sea surface temperature by ERA5, the wind speed from the sea and the vertical wind shear are stronger than from the inland, and are vulnerable to seasonal sea surface temperature fluctuations. In particular, the abnormal vertical wind shear, in which only the lower wind speed was strengthened and appeared in the form of a nose, mainly appeared in winter when the atmosphere was near-neutral or stable, and all occurred when the wind blows from the sea. This phenomenon usually occurred when there was a sudden change in sea surface temperature within a short period of time.

Post-Correlation Analysis for Shake Table Test of Square Liquid Storage Tank (정사각형 수조 진동대실험에 대한 상관해석)

  • Son, Il-Min;Kim, Jae-Min;Choi, Hyung-Suk;Baek, Eun-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a post-correlation analysis for shaking table test of square water storage tank is presented for the use of advances in earthquake-resistant design of liquid storage tank. For this purpose, the ANSYS CFX program is selected for the CFD analysis. Sensitivity analysis for resonant sloshing motion in terms of grid size and turbulence model suggested that (1) horizontal grid size as well as vertical grid size is a key variable in the sloshing analysis, and (2) the SST turbulence model is best for the sloshing analysis. Finally, correlation analyses for a non-resonant harmonic input and scaled earthquake excitation of the El Centro (1940) NS component are carried out using the grid and turbulence model established through the post-correlation analysis for the resonant motion. As a result, sloshing time histories by the CFD analysis agreed very well with the test results.

Fresh Water Flume Analysis Using an Unstructured Grid Ocean Circulation Model (비정규격자계 해양순환 모델을 이용한 하구에서의 담수 유출분석)

  • Hwang, Jin-Hwan;Park, Young-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.227-234
    • /
    • 2009
  • Using a finite volume ocean circulation model based on an unstructured grid (FVCOM), we studied the structure of a fresh water bulge that influences on the Region Of Freshwater Influence. Fresh water discharged a river forms a coastal boundary current to the righthand side and a cyclonically circulation freshwater bulge that grows with time. In the middle of the bulge, vertical motions bring fresh water to the bottom. When tidal motions are included, the bulge disappears while the boundary currents becomes wider. Through a simple comparison of areas occupied low salinity water we quantified vertical and horizontal mixing due to the tide and showed that the tidal motion enhances the vertical mixing. During the first few tidal cycles right after the onset of the river discharge, due to tidal excursion the horizontal mixing becomes stronger. The vertical mixing by the tide mixes the fresh water After a certain time the water around the river mouth is well mixed and the horizontal excursion of the fresh water near the river mouth does not have much effect on the horizontal mixing. When there is no tidal motion horizontal mixing is mainly by the inertial instability at the surface and the horizontal mixing becomes stronger over time.

  • PDF

Systematic Experimental and Numerical Analyses on Added Resistance in Waves (선박의 파랑 중 부가저항에 대한 실험과 수치계산의 비교 연구)

  • Park, Dong-Min;Seo, Min-Guk;Lee, Jaehoon;Yang, Kyung-Kyu;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.459-479
    • /
    • 2014
  • This paper considers experimental and numerical studies on added resistance in waves. As the numerical methods, three different methods, strip method, Rankine panel method and Cartesian-grid method, are applied. The computational results of vertical motion response and added resistance are compared with the experimental data of Series 60($C_B=0.8$) hull, S175 containership and KVLCC2 hull. To investigate the influence of above-still water hull form, a Rankine panel method is extended to two nonlinear methods: weakly-nonlinear and weak-scatterer approaches. As nonlinear computational models, three ships are considered: original KVLCC2 hull, 'Ax-bow' and 'Leadge-bow' hulls. Two of the three models are modified hull forms of original KVLCC2 hull, aiming the reduction of added resistance. The nonlinear computational results are compared with linear results, and the improvement of computational result is discussed. As experimental approach, a series of towing-tank experiment for ship motions and added resistance on the three models (original KVLCC2 hull, 'Ax-bow' and 'Leadge-bow') are carried out. For the original KVLCC2 hull, uncertainty analysis in the measurement of vertical motion response and added resistance is performed in three waves conditions: ${\lambda}/L=0.5$, 1.1, 2.0. From the experimental results, the effects of hull form on added resistance are discussed.

Stress-Strain Behavior of Flexible Pavement Reinforced with Geosynthetics (토목섬유로 보강된 아스팔트포장의 응력-변형 거동특성)

  • Ahn, Tae-Bong;Yang, Sung-Chul;Cho, Sam-Deok;Kim, Nam-Ho
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.151-163
    • /
    • 2001
  • Very few studies have been attempted to understand the stress-strain behavior of flexible pavements reinforced with geosynthetics in the middle of asphalt layer. In this study, the flexible asphalt layer was analyzed with finite element method to understand stress-strain behavior. The asphalt layer was reinforced with glass grid and geogrid. The reinforcement was applied in the asphalt layer to prevent its excessive deformation and shear failure. The location of installation and stiffness of the geosynthetics were varied to obtain optimum depth of reinforcement and proper modulus. The results indicate that geosynthetics are more effective for reducing maximum shear stress than those of vertical stress and vertical displacement. Maximum shear stress decreased 15$\sim$20%, and glass grid with high value of modulus was the most effective. Also, in order to prevent failure of asphalt layer, reinforcement should be installed in the 3cm$\sim$5cm depth.

  • PDF

Numerical simulation of Hydrodynamics and water properties in the Yellow Sea. I. Climatological inter-annual variability

  • Kim, Chang-S.;Lim, Hak-Soo;Yoon, Jong-Joo;Chu, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.72-95
    • /
    • 2004
  • The Yellow Sea is characterized by relatively shallow water depth, varying range of tidal action and very complex coastal geometry such as islands, bays, peninsulas, tidal flats, shoals etc. The dynamic system is controlled by tides, regional winds, river discharge, and interaction with the Kuroshio. The circulation, water mass properties and their variability in the Yellow Sea are very complicated and still far from clear understanding. In this study, an effort to improve our understanding the dynamic feature of the Yellow Sea system was conducted using numerical simulation with the ROMS model, applying climatologic forcing such as winds, heat flux and fresh water precipitation. The inter-annual variability of general circulation and thermohaline structure throughout the year has been obtained, which has been compared with observational data sets. The simulated horizontal distribution and vertical cross-sectional structures of temperature and salinity show a good agreement with the observational data indicating significantly the water masses such as Yellow Sea Warm Water, Yellow Sea Bottom Cold Water, Changjiang River Diluted Water and other sporadically observed coastal waters around the Yellow Sea. The tidal effects on circulation and dynamic features such as coastal tidal fronts and coastal mixing are predominant in the Yellow Sea. Hence the tidal effects on those dynamic features are dealt in the accompanying paper (Kim et at., 2004). The ROMS model adopts curvilinear grid with horizontal resolution of 35 km and 20 vertical grid spacing confirming to relatively realistic bottom topography. The model was initialized with the LEVITUS climatologic data and forced by the monthly mean air-sea fluxes of momentum, heat and fresh water derived from COADS. On the open boundaries, climatological temperature and salinity are nudged every 20 days for data assimilation to stabilize the modeling implementation. This study demonstrates a Yellow Sea version of Atlantic Basin experiment conducted by Haidvogel et al. (2000) experiment that the ROMS simulates the dynamic variability of temperature, salinity, and velocity fields in the ocean. However the present study has been improved to deal with the large river system, open boundary nudging process and further with combination of the tidal forcing that is a significant feature in the Yellow Sea.