• Title/Summary/Keyword: vertical drop

Search Result 218, Processing Time 0.028 seconds

The Effect of Asymmetric Muscle Force in the Lower Extremity on Dynamic Balance on during Drop Landing (하지근력의 좌우 비대칭성이 드롭랜딩 시 동적 안정성에 미치는 영향)

  • Kim, Chul-Ju;Lee, Kyung-Il;Hong, Wan-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.173-179
    • /
    • 2011
  • This study aims to analyse difference in biomechanical factors between dominant legs and recessive ones according to muscular imbalance during drop landing targeting talented children in sports. The subjects of the study were ten primary students who are attending to Sports Program for Talented Children organized by C university (age: $12.28{\pm}0.70$ year, height: $1.52{\pm}0.11$ m, and weight: $45.2{\pm}4.9$ kg). Strength legs were classified into dominant side and strengthless legs were classified into non-dominant legs. For three-dimensional analyses of the data collected, 6 video cameras(MotionMaster200, Visol, Korea) were used. To analyse ground reaction force, two force platforms(AMTI ORG-6, MA) were used and to analyse electromyograghy a 8-channeled wireless Noraxon Myoresearch made in USA was used at 1000 Hz for sampling. As a result, it was discovered that the dominants legs controlled knee bending motions more stably than strengthless legs as the maximum vertical ground reaction force was significantly high in dominant legs(p<.05), and joint moment of knee joints of the dominant legs was high(p<.05). Therefore, this study suggested that injury prevention program focusing on muscular balance as well as the existing sports programs for talented children should be developed based on results of the study and it is expected that the results will be useful for improvement of sports programs for talented children.

Effect of Independent Suspension Function of Hiking Boots on the Stability and Load of Foot (등산화 아웃솔의 독립적 서스펜션 기능이 발의 안정성 및 부하에 미치는 효과)

  • Lee, Ki-Kwang;Choi, Chi-Sun;Eun, Seon-Deok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.115-119
    • /
    • 2006
  • To investigate the effects of independent suspension technology(IST) of hiking boot on the stability and load of foot, eight participants performed medial and lateral drop landing from 33.4cm height and 85cm distance to uneven surface while wearing normal & IST hiking boots. For the stability of foot during the drop landing, the balance angle & suspension angle and rearfoot angle was analyzed using high-speed video analysis. Also kinetic analysis using the force plate and insole pressure measurement was conducted to analyze vertical & breaking ground reaction force and pressure distribution. Not only the balance angle & suspension angle but also rearfoot angle was improved with IST boots for lateral drop landing. These results indicate the IST boots may have the suspension function which keeps the foot to be stable during landing. However the IST boots did not show any effect for medial landing. This might be related to the hardness of medial part of outsole. Therefore the softer outsole of medial part could be recommended. Furthermore the impact force & breaking force and insole pressure were reduced with IST boot. These results means that IST boot has not only cushioning effect but also good grip effect. Therefore the hiking boots applied the independent suspension function may help to reduce fatigue and prevent injury such as ankle sprain in hiking on uneven surface.

Formulation on the Empirical Equation of the Cask Impact Forces by Dimensional Analysis (차원해석을 이용한 사용후 핵연료 수송용기의 충격력 실험식 공식화)

  • Kim Yong-Jae;Choi Young-Jin;Lee Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.245-254
    • /
    • 2005
  • Radioactive material is used in the various fields. The numbers of transport for radioactive material have been gradually increased in both domestic and International regions. The safety of the cask should be secured to safely transport of radioactive material. The korean atomic law and the IAEA safety standards prescribe regulations lot the safe transport of radioactive material The cask for spent fuel is comprised of the body and the impact limiter. In this study, the empirical equation of the cask impact force is proposed based on the dimensional analysis. Using this empirical equation the characteristics of the impact limiter are analyzed. The results are also validated by comparing with the previous results of the impact area method and the finite element analysis. The present method can be used to predict the impact force of the cask.

Studies on the Evaporative Heat Transfer Characteristics and Pressure Drop of CO2 Flowing Upward in Inclined (45°) Smooth and Micro-fin Tubes (경사평활관 및 마이크로핀관에서의 이산화탄소의 증발열전달 특성과 압력강하에 관한 실험적 연구)

  • Kim, Yong-Jin;Cho, Jin-Min;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.612-620
    • /
    • 2008
  • New alternative refrigerants have been developed due to the ozone layer depletion and global warming. For this reason, carbon dioxide is believed to be a promising refrigerant for use in air conditioners and heat pumps. Evaporative heat transfer characteristics and pressure drop of $CO_2$ with outer diameter of 5 mm in inclined ($45^{\circ}$) smooth and micro-fin tubes have been investigated by the experiments with respect to several test conditions such as mass fluxes, heat fluxes, evaporation temperatures in this study. The inclined ($45^{\circ}$) smooth and micro-fin tubes with length of 1.44 m were installed to measure the evaporative heat transfer coefficients of $CO_2$ and heat was supplied to the refrigerant by direct heating method where the test tube was uniformly heated by electricity. The tests were conducted at mass fluxes from 212 to $656\;kg/m^2s$, heat fluxes from 15 to $60\;kW/m^2$ and evaporation temperatures from -10 to $20^{\circ}C$. The heat transfer coefficients of $CO_2$ are slightly increased with increasing mass flux, and the heat transfer characteristics in the inclined ($45^{\circ}$) tubes are enhanced about $5{\sim}10%$ compared with those in horizontal or vertical tubes.

CFD simulation of cleaning nanometer-sized particulate contaminants using high-speed injection of micron droplets (초고속 미세 액적 충돌을 이용한 나노미터 크기 입자상 오염물질의 세정에 대한 CFD 시뮬레이션)

  • Jinhyo, Park;Jeonggeon, Kim;Seungwook, Lee;Donggeun, Lee
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.129-136
    • /
    • 2022
  • The line width of circuits in semiconductor devices continues to decrease down to a few nanometers. Since nanoparticles attached to the patterned wafer surface may cause malfunction of the devices, it is crucial to remove the contaminant nanoparticles. Physical cleaning that utilizes momentum of liquid for detaching solid nanoparticles has recently been tested in place of the conventional chemical method. Dropwise impaction has been employed to increase the removal efficiency with expectation of more efficient momentum exchange. To date, most of relevant studies have been focused on drop spreading behavior on a horizontal surface in terms of maximum spreading diameters and average spreading velocity of drop. More important is the local liquid velocity at the position of nanoparticle, very near the surface, rather than the vertical average value. In addition, there are very scarce existing studies dealing with microdroplet impaction that may be desirable for minimizing pattern demage of the wafer. In this study, we investigated the local velocity distribution in spreading liquid film under various impaction conditions through the CFD simulation. Combining the numerical results with the particle removal model, we estimated an effective cleaning diameter (ECD), which is a measure of the particle removal capacity of a single drop, and presented the predicted ECD data as a function of droplet's velocity and diameter particularly when the droplets are microns in diameter.

Numerical analysis for heat transfer and pressure drop characteristics of (다양한 배플 인자에 따른 셀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 수치해석)

  • Hou, Rong-Rong;Park, Hyeong-Seon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.367-375
    • /
    • 2014
  • In numbers of kinds of heat exchanger, the shell-tube heat exchanger is the most commonly used type of heat exchanger in the industry field. In order to improve the thermal performance of the heat exchanger, this study was analyzed heat transfer characteristics according to arrangement of baffle and direction of baffle and bump phase of baffle about shell-tube heat exchanger using appropriate SST (Shear Stress Transport) turbulence model for flow separation and boundary layer analysis. As the boundary condition for CFD (Computational Fluid Dynamics) analysis, the inlet temperature of shell side was constantly 344 K and the variation of the water flow rate was 6, 12, 18 and 24 l/min. As the result of analysis, zigzag baffle arrangement enhances heat transfer rate and pressure drop. Furthermore, in the direction of the baffle, heat transfer rate is more improved with vertical type and angle $45^{\circ}$ type than existing type, and pressure drop was little difference. Also, the bump shape of baffle surface contributes to heat transfer rate and pressure drop improvement due to the increased heat transfer area. Through analysis results, we knew that the increase of the heat transfer was influenced by flow separation, fluid residual time, contact area with the tube, flow rate, swirl and so on.

Investigation for the Characters of Human Perception Level according to Acceleration Value Parameters (가속도 크기 변수에 따른 수직진동에 대한 인지수준 고찰)

  • Lee, MinJung;Han, SangWhan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.731-740
    • /
    • 2014
  • Occupants induced floor vertical vibrations may cause other occupant's annoyance and lead to social loss. To help control such floor vibrations, several criteria have been developed mostly based on human perception tests and floor vibration tests. Floor vibration is evaluated by comparison with criteria and vibration parameters of subject floor, such as frequency, damping ratio, acceleration value, vibration duration time and occurrence frequency. Three acceleration value parameters are used in criteria; peak acceleration, rms acceleration and VDV, when a floor vibration serviceability is evaluated. Meanwhile rms acceleration and peak acceleration are adopted as vibration limit value in criteria and researches of human perception for vibration. Occupants induced floor vibration is transient rather than steady state. However, rms acceleration is not reliable parameter for evaluating transient vibration. The objective of this study is to investigate the characters of human perception level according to acceleration value parameters for vibration induced by heel impacts and walking activities.

A Behavior Analysis of Railway Steel Plate Girder Bridge in the Applying Resilient Panel Track System (방진제도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석)

  • Choi, Jung-Youl;Eom, Mac;Kang, Duk-Man;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.717-724
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements (about 59%) and stresses (about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

Development of a Particle Bed Heat Exchanger(II) -An Experimental Study on Heat Transfer Characteristics of Fluidized Bed Heat Exchanger with Double Pipe (Parallelflow) (입자층(粒子層)을 이용(利用)한 열교환기(熱交換器) 개발(開發)에 관(關)한 연구(硏究)(II) - 유동층형(流動層形) 이중관식(二重管式) 열교환기(熱交換器)의 전열특성(傳熱特性)에 대한 실험적(實驗的) 연구(硏究)(병행류식(竝行流式)))

  • Kim, G.C.;Yoo, J.O.;Yang, H.J.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.127-136
    • /
    • 1990
  • Air-solid bed has been known to be an effective heat transfer augmentation device which could be applied to heat exchangers. In this study, pressure drop and heat transfer characteristics of vertical annular fluidized bed heat exchanger with air flowing through were studied experimentally. The experiments was conducted to calculate overall heat transfer coefficient on fluidized bed heat exchangers immersed single vertical tube and investigate minimum fluidized velocity in fluidized bed of alumina beads and steel balls. The influence of flow direction, particle diameter, the heights of static bed and air mass fluidizing velocity has been examined. The experimental results showed the optimum operating condition and effective static bed height for fluidized bed heat exchangers. For the same power loss, comparisions of heat transfer effect between the fluidized bed heat exchanger and the single phase forced convetion heat exchanger indicate that both miniaturization of heat exchanger and heat transfer augmentation at low flow velocity are possible by application of the air-solid to heat exchangers.

  • PDF

Heat and Mass Transfer of Parallel Plate Heat Exchanger under Frosting Condition (착상조건하에서 평행 평판 열교환기의 열 및 물질전달)

  • Lee, K.S.;Lee, T.H.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.155-165
    • /
    • 1994
  • In this study, the following factors are investigated from experiments for a vertical parallel plate heat exchanger under the frosting condition ; the growth of frost layer, the characteristics of heat and mass transfer, the change of mass flow rate of the air passing through the heat exchanger, and the pressure drop of the air in the heat exchanger. The amount of heat and mass flux of water vapor transferred from the air stream to the heat exchanger surface is large at the early stage of frosting and then decreases dramatically, and the extent of decreasing rate becomes moderate with time. The frost layer formed near the inlet of the heat exchanger is thicker and denser than that formed near the outlet. It is found that the gradient of the amount of frost along the flow direction increases with time. In the early period of frost formation, the thermal resistance between the air and the cooling plate increases dramatically and then the extent of change decreases with time. Initially the convective thermal resistance is dominant. Then, while the convective thermal resistance decreases with time, the conductive thermal resistance continues to increase with time and finally the conductive thermal resistance becomes dominant.

  • PDF