• Title/Summary/Keyword: vertical drainage

Search Result 160, Processing Time 0.022 seconds

Centrifuge Modeling of Soft Clay with Vertical Drains Considering the Centrifuge Similarity (상사성을 고려한 배수재 설치 연약점토 지반의 원심모델링)

  • Yoo, Nam-Jae;Hong, Young-Kil;Jeong, Gil-Soo;Cho, Han-Ki
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.111-120
    • /
    • 2007
  • This paper is results of experimental research on the effect of application of similarity related to permeability of soil on the consolidation behavior as centrifuge modeling of consolidation is performed with the centrifuge model facility. In this research, the permeability of soil was controlled by changing the viscosity of porewater as the mixed water with glycerin was used during the centrifuge model experiments. The effect of drainage path on consolidation was investigated by installing the vertical drains. A serise of centrifuge model tests with conditions of single vertical and radial horizontal drainage were carried out. Kaolinite and Jumunjin standard sand were used as soft clay and surcharges respectively during tests. For testing condition of single vertical drainage considering similarity of permeability, it was found that consolidation with mixed porewater with glycerin was delayed in comparisons sons with test results with water only. For conditions of horizontal drainage with vertical drains, a low permeability by changing the viscosity of pore water resulted in delayed degree of consolidation at an initial stage of consolidation. But, it predicted not much differences in settlement as long as the consolidation time was sufficiently long enough to finish consolidation. Consequently, it was found that similarity in permeability should be considered to be critical for the case of centrifuge model experiments related to consolidation with long drainage path.

  • PDF

A Study on the Application of Vertical Drainage System for Resisting Uplift of Sub-structure (지하구조물 부력방지를 위한 연직배수시스템의 적용성 연구)

  • Chun, Byung-Sik;Yeoh, Yoo-Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.183-190
    • /
    • 2001
  • A sub-structure is uplift if the floating greater than dead load of a structure. When such occasion arise, a structure sustain damage. In general, the measures for floating prevention of structure are a permanent anchor method and a drainage method. The primary construction cost of a permanent anchor method is heavy. And a drainage method is needed maintenance management long term. At this point, the measures for floating prevention of a notion being requires the other days. Therefore, at this study a simple construction and a economic vertical drainage system was developed. The findings be used in the in-situ and gave careful consideration to an application. The result of examination, this system considering a characteristic of coefficient of permeability for the ground controls occurrence of floating despite the water level rise of the ground, which a period of construction get shorter compared with other methods, which understood that measures satisfactory in the financial aspect. Especially, A structure occurring effects of flatting under the course of construction made use of it. As the result of the effect of it was confirmed by construction.

  • PDF

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Drainage (방사방향 배수를 고려한 초연약 지반의 비선형 유한변형 자중압밀 거동 분석)

  • An, Yong-Hoon;Kwak, Tae-Hoon;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.17-28
    • /
    • 2010
  • Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials, because they additionally provide a radial drainage path in a deep soil deposit. In practice, vertical drains are commonly installed in the process of self-weight consolidation of a dredged soil deposit. The absence of an appropriate analysis tool for this situation makes it substantially difficult to estimate self-weight consolidation behavior considering both vertical and radial drainage. In this paper, a new method has been proposed to take into account both vertical and radial drainage conditions during nonlinear finite strain self-weight consolidation of dredged soil deposits. For 1-D nonlinear finite strain consolidation in the vertical direction, the Morris (2002) theory and the PSDDF analysis are adopted, respectively. On the other hand, to consider the radial drainage, Barron's vertical drain theory (1948) is used. The overall average degree of self-weight consolidation of the dredged soil is estimated using the Carillo formula (1942), in which both vertical and radial drainage are assembled together. A series of large-scale self-weight consolidation experiments being equipped with a vertical drain have been carried out to verify the analysis method proposed in this paper. The results of the new analysis method were generally in agreement with those of the experiments.

Geotechnical Evaluation on the Application of Reactive Vertical Drainage Method (반응성연직배수공법의 적용에 대한 지반공학적 평가)

  • Na, Hyoung-Yun;Chae, Deokho;Oh, Myoung-Hak;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.13-17
    • /
    • 2012
  • Recently, our ocean development paradigm is changing so that the development focus has been moved from the port facility developments to creating useful marine space. This paradigm accords well with the current green technology and helps the growth of service industries and the development from this paradigm can become a national land mark. Accordingly, the concept of creating marine waste landfill by the development of resource recycling technology has been introduced for eco-friendly space as an artificial island in future. Therefore, this study introduces the reactive vertical drainage method that is to pursue the purification of pollutants as well as stabilization of newly deposited soils in marine environments. To install the reactive vertical drainage piles for more effective feasibility and constructability, placements of drainage mid-layer are considered in the geotechnical viewpoint. Consolidation characteristics were evaluated by standard consolidation tests after several types of model test. As s result, the application of mid-layer drainage is strongly recommended in the reactive vertical drainage to quickly stabilize newly deposited soils. And vacuum consolidation method has better consolidation characteristic than vertical loading method in terms of the settlements predicted by additional stress for further use as an artificial island.

A Study on Character of Consolidation for Radial Drainage of Pohang배s Clay Ground (포항 점토 지반의 수평배수 압밀특성 연구)

  • Lee, Song;Jeon, Je-Sung;Kim, Won-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.685-692
    • /
    • 2000
  • Vertical drain used improvement soft clay is made of not only decreasing construction time but also increasing the ground strength during some decades. As, it is applied to improvement soft clay with vertical drain, it is designed by the result that is caused by oedemeter test ignored anisotropic of the ground related to consolidation conditions. When we are expected consolidation conditions, the most important factors is soil of compaction and water permeability. Above all, anisotropic of the ground permeability show the results which differ between vertical and radial drainage. Recently, We study for radial consolidation coefficient and permeability coefficient that utilized Rowe Cell Consolidation and permeability tester but, it dont use well because of not only a supply lack also difficulty of test. The paper experimented with searching anisotropic of the ground so there are Rowe Cell test, standard consolidation tester and modified standard consolidation test that have pohang's soft clay ground. Therefore, we find anisotropic of the ground and a tester of easy use more than before. We made a comparison test result between the devised tester and Rowe Cell tester, Also, we learned average degree of consolidation for partial penetrating vertical drains. We were found relations as effective stress-void and effective stress-permeability coefficient through those tests.

  • PDF

A study of Improvement on the Road Drainage Poor Site (도로배수 취약구간의 개선방안에 대한 연구)

  • Lee, Man-Seok;Kim, Heung-Rae;Lee, Kyung-Ha;Kang, Min-Soo;Song, Min-Tae
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • This research aims to investigate the cause of the occurrence of a weak road drainage section scientifically and specifically through a site survey for a poorly drained section occurring due to rainfalls during road operation. This paper deeply reviewed the existing research results and current situation data on the poorly drained sections accumulated in Korea Expressway Corporation in order to investigate the cause of the occurrence of a weak road drainage section, and deeply verified and analyzed the weak sections for the road surface drainage facilities and the other road drainage facilities by visiting the expressway controlled by the 6 local headquarters and 33 branches of Korea Expressway Corporation. As a result of site surveys for the weak road drainage sections, i) in a road surface section, occurrence of ponding in the road shoulder pavement due to slope changes, bad collection of water in the collecting well at a median strip, shortage of road shoulder dike height, and inferior construction, etc. was analyzed to be the main cause of the occurrence of poorly drained sections, and ii) in a road neighborhood section, the occurrence of pavement height difference in a main road and shoulder section due to inferior ditches on a slope and the bad drain age at the inlet and outlet of a culvert due to soil deposits, debris, etc. were analyzed to be the main cause of the occurrence of weak sections. Proposed as a plan to improve the poorly drainage section of road were i)calculation of capacity through material changes at the ditch, enhancement of vertical sections and hydraulic analysis in terms of construction and other aspects, ii)derivation of a combined slope considering a slope and a vertical linearity and maintenance of proper distance between drainage structures in a vertical concave section in terms of geometrical structure, and iii)calculation of the drainage facility installation interval using a minutely rainfall intensity formula and a non-uniform flow analysis technique in terms of hydraulics and hydrologics and prompt removal of rainfalls from the road surface according to a linear drainage method.

A Study on the Applicability of Copper Slag as Drainage Material (산업폐기물인 동슬래그의 배수재로서의 활용에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.65-72
    • /
    • 2004
  • Within a country, owing to the restriction of aggregate which have been supplied to construction sites, applicability of byproducts such as the copper slag is expected to be more reasonable. In this study, on the basis of characteristics, grain distribution and environmental stability of copper slag, its engineering application was estimated as the vertical and horizontal drainage material. As a results of laboratory tests, it was shown that the permeability of the copper slag was similar to that of sands under vertical drainage condition. In addition, the copper slag showed higher critical hydraulic gradient than that of sand under upward vertical flow state. The copper slag has potential safety against piping and it that the copper slag is suitable for drainage and filter material.

  • PDF

A Field Study on the Application of Pilot-scale Vertical Flow Reactor System into the Removal of Fe, As and Mn in Mine Drainage (현장 파일럿 실험을 통한 광산배수 내 Fe, As, Mn 자연정화처리 효율평가)

  • Kwon, Oh-Hun;Park, Hyun-Sung;Lee, JinSoo;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.695-701
    • /
    • 2020
  • This study aimed to monitor a pilot-scale vertical flow reactor (VFR) system being operated in long-term for water quality control of pH-neutral mine drainage containing Fe, Mn and As, discharged in D mine site. The treatment systems of VFR and zero manganese reactor (ZMR) consisted of sand/limestone, and steel slag/limestone, respectively. The systems were operated during about six months in order to evaluate their long-term treatment efficiency It was observed that both pH and alkalinity of mine drainage were remarkably increased and more than 98% of Fe, As and Mn ions was continuously removed during the tested period of time. In conclusion, the field results of this work demonstrated that the vertical flow reactor system can effectively treat mine drainage contaminated by Fe, As and Mn.

Optimum PVD installation depth for two-way drainage deposit

  • Chai, J.C.;Miura, N.;Kirekawa, T.;Hino, T.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.179-191
    • /
    • 2009
  • For a two-way drainage deposit under a surcharge load, it is possible to leave a layer adjacent to the bottom drainage boundary without prefabricated vertical drain (PVD) improvement and achieve approximately the same degree of consolidation as a fully penetrated case. This depth is designated as an optimum PVD installation depth. Further, for a two-way drainage deposit under vacuum pressure, if the PVDs are fully penetrated through the deposit, the vacuum pressure will leak through the bottom drainage boundary. In this case, the PVDs have to be partially penetrated, and there is an optimum installation depth. The equations for calculating these optimum installation depths are presented, and the usefulness of the equations is studied by using finite element analysis as well as laboratory model test results.

Numerical analysis of Consolidation Behavior under Various Drainage Conditions (배수조건에 따른 압밀 거동의 수치적 분석)

  • Oh, Sang-Ho;Cho, Wan-Jei;Yune, Chan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1194-1199
    • /
    • 2010
  • Systematic finite element analyses on consolidation were performed with various drainage conditions. Numerical analyses were performed using SAGE CRISP2D, a commercial numerical analysis program for the conventional geotechnical engineering practice. For the input properties of the numerical analyses, incremental loading oedometer tests were performed on reconstituted kaolinite samples. Numerical analyses were performed with various drainage conditions such as vertical, radially inward and outward drainage conditions. For the case of radially inward drainage conditions, a series of numerical analyses were performed with varying the diameter of vertical drains. As a result, the lateral deformation and void ratio variation occurred during consolidation for the radially inward or outward drainage conditions. And the variations of the lateral deformation and void ratio did not fully disappear even after the completion of the consolidation and induced the spatial variations of the soil properties. Keywords : finite element analysis of consolidation, various drainage conditions, lateral deformation, spatial variation of soil properties.

  • PDF