• 제목/요약/키워드: vertical deflections and accelerations

검색결과 9건 처리시간 0.021초

무도상 판형교의 동적거동특성 분석을 위한 실험적 연구 (Field Test to Investigate Dynamic Characteristics of Steel Plate Girder Railway Bridges without Ballast)

  • 최진유;오지택;김현민;이상배
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.678-683
    • /
    • 2002
  • Field measurements were conducted to analysis dynamic characteristics of existing steel plate girder railway bridges without ballast. Three bridges which have 9m, 12m, 18m span length in Kyoung-Bu and Ho-Nam Line were selected for test. According to the each bridge, dynamic vertical deflections and vertical and horizontal accelerations were measured. Natural frequencies, vertical deflections and accelerations obtained from field tests were compared with the limit value specified in the UC, Japanese and Korean railway bridge specification.

  • PDF

다중화된 광섬유센서를 이용한 강철도교의 가속도 유추 (Acceleration Estimation of a Steel Plate Girder Bridge using Multiplexed FBG Sensors)

  • 정원석;강동훈;김현민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1062-1067
    • /
    • 2007
  • This study presents an experimental technique to monitor the dynamic behavior of the railway bridge system simultaneously using multiplexed fiber Bragg grating (FBG) sensors. The measuring quantities include stains, curvatures, vertical deflections, and vertical accelerations. The strains are directly measured from multiplexed FBG sensors at various locations of the test bridge followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the Bernoulli beam theory and regression analysis. Finally, vertical accelerations are obtained from the numerical differentiation in time domain. In order to verify the proposed method, several conventional electric strain gauges, displacement transducers, and accelerometers are installed at the mid-span of the bridge for comparisons. A test train is passed over the bridge to monitor the dynamic response of the bridge. The monitoring results show that the multiplexed FBG sensing system is able to capture the essential behavior of the test bridge while resolving wiring problem in practice.

  • PDF

무도상 판형교의 횡방향 동적거동특성 분석을 위한 실험적 연구 (Field Test to Investigate Lateral Dynamic Characteristics of Steel Plate Girder Railway Bridge without Ballast)

  • 오지택;김현민;박옥정;박찬
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.591-595
    • /
    • 2003
  • Field measurements were conducted to analysis lateral dynamic characteristics of existing steel plate girder railway bridges without ballast. Three bridges which have 9m, 12m, 18m span length in Kyoung-Bu Line were selected for test. According to the each bridge, dynamic lateral deflections and accelerations were measured. From the present study, it was observed that dynamic lateral amplification phenomena caused by a fluctuation of lateral force were occurred under the current running circumstances. Lateral deflections were occurred below than that specified in Korean railway bridge specification, but lateral accelerations is a match for vertical accelerations. From now on, it is in need a plan to reduce lateral accelerations for the conventional railway Line speed up.

  • PDF

Numerical analysis for dynamic characteristics of bridge considering next-generation high-speed train

  • Soon T. Oh;Dong J. Lee;Seong T. Yi;Byeong J. Jeong
    • Advances in Computational Design
    • /
    • 제8권1호
    • /
    • pp.1-12
    • /
    • 2023
  • To consider the effects of the increasing speed of next-generation high-speed trains, the existing traffic safety code for railway bridges needs to be improved. This study suggests a numerical method of evaluating the new effects of this increasing speed on railway bridges. A prestressed concrete (PSC) box bridge with a 40 m span length on the Gyeongbu track sector is selected as a representative example of high-speed railway bridges in Korea. Numerical models considering the inertial mass forces of a 38-degree-of-freedom train and the interaction forces with the bridge as well as track irregularities are presented in detail. The vertical deflections and accelerations of the deck are calculated and compared to find the new effects on the bridge arising with increasing speed under simply and continuously supported boundary conditions. The ratios between the static and dynamic responses are calculated as the dynamic amplification factors (DAFs) under different running speeds to evaluate the traffic safety. The maximum deflection and acceleration caused by the running speed are indicated, and regression equations for predicting these quantities based on the speed are also proposed.

Dynamic analysis of coupled train - ladder track - elevated bridge system

  • Xia, He;Deng, Yushu;Xia, Chaoyi;De Roeck, G.;Qi, Lin;Sun, Lu
    • Structural Engineering and Mechanics
    • /
    • 제47권5호
    • /
    • pp.661-678
    • /
    • 2013
  • As a new type of vibration reduction, the ladder track system has been successfully used in engineering. In this paper, a numerical model of the train-track-viaduct system is established to study the dynamic responses of an elevated bridge with ladder track. The system is composed of a vehicle submodel, a track submodel and a bridge submodel, with the measured track irregularities as the system self-excitation. The whole time histories of a train running through an elevated bridge with $3{\times}27m$ continuous PC box girders are simulated. The dynamic responses of the bridge such as deflections, lateral and vertical accelerations, and the vehicle responses such as derailment factors, offload factors and car-body accelerations are calculated. The calculated results are partly validated through the comparison with the experimental data. Compared to the common slab track, adapting the ladder sleeper can effectively reduce the accelerations of the bridge girder, and also reduce the car-body accelerations and offload factors of the train vehicle.

I형 거더교의 동력분산형 하중에 대한 동적해석 (Dynamic Analysis of I-Type Girder Bridge with HEMU Train Load)

  • 이태규;김혜욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1279-1286
    • /
    • 2010
  • This paper deals with the influence on the dynamic response of I-type girder railway bridge with high-speed electric multiple unit(HEMU) train load. This bridge system which has six I-girder and several cross beams, is modeled with plate and frame elements. And the upper slab is assumed to be fully connected with girders using rigid rinks. Span lengths, types of vehicle and running speeds are selected as parameters for analyses. For more exact analysis, it was adopted that 3-dimensional section of bridge models was produced by the assumed design wheel loads of HEMU vehicle at 200~350 km/hr speeds. Dynamic vertical deflections, dynamic amplification factors and vertical accelerations of bridges having 30 and 35 m span length were investigated and compared with the limit values specified in various national railway bridge specifications.

  • PDF

무도상 판형교의 동적거동특성 분석을 위한 해석적 연구 (Numerical Analysis to Investigate Dynamic Characteristics of Steel Plate Girder Railway Bridges without Ballast)

  • 최진유;오지택;김현민;김영국
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.1080-1085
    • /
    • 2002
  • A dynamic characteristics of existing steel plate girder railway bridges without ballast were investigated from the finite element analysis. Span lengths, types of vehicle and running speeds are selected as parameters for analyses. For more exact analysis, it was adopted that 3-dimensional bridge models and wheel loads were produced by averaging field measured wheel loads of running vehicles at various speeds. Dynamic vertical deflections, dynamic amplification factors and vertical accelerations of bridges having 9m, 12m and 18m span length were investigated and compared with the limit values specified in Korean railway bridge specification.

  • PDF

차세대 고속철 통과 교량의 동적특성에 대한 수치해석 (Numerical Analysis for Dynamic Characteristics of Next-Generation High-Speed Railway Bridge)

  • 오순택;이동준;이성태;정병준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권2호
    • /
    • pp.9-17
    • /
    • 2022
  • 차세대 고속철은 주행 속도가 점점 증가하므로 이를 반영한 고속철 차량 통과교량에 대한 새로운 주행 안정성의 평가가 요구된다. 이를 위하여 현재 공용 중인 경부 고속철 구간의 대표 교량형식인 PSC (Pre-stressed Concrete) 박스거더 교량을 대상으로 관성질량을 고려한 38-자유도 차량과 궤도 불규칙성과 상호 작용력을 반영하여 모형화하였으며, 고속철 차량 주행속도 별로 동적 수치해석을 수행하여 주행 안정성을 평가하였다. 수치해석을 통해 단순교와 2 경간 연속교의 최대 수직 변위와 DAF (Dynamic Amplification Factor; 동적확대계수)를 산출하여 동적 안정성 여부를 판단하였으며, 또한 주행 속도 별 최대 수직 변위를 추정하기 위한 3차 다항 회귀 분석식을 제안하였다. 대표적인 주행 속도와 횡 단면 위치 별 수직 변위 차이를 비교하고, 종 방향 최대 면틀림을 분석하였다. 또한, 고속철 차량의 교량통과 중 교량의 수직변위에 대한 가속도 영향선과 각 항목 간의 연관성을 분석하여 주행 안정성을 평가하였다.

내풍케이블 배치에 따른 가설 중 사장교의 공기역학적 거동 비교 (Comparison of Aerodynamic Responses for Cable-Stayed Bridges during Construction with Temporary Stabilizing Measures)

  • 조재영;김영민;이학은
    • 한국강구조학회 논문집
    • /
    • 제19권2호
    • /
    • pp.147-160
    • /
    • 2007
  • 사장교 가설 시 태풍에도 내풍안정성을 확보할 수 있도록 내풍케이블 가설공법에 대한 심도 있는 실험을 수행하였다. 주경간이 각각 475m, 230m인 강합성 사장교에 대하여 가설단계별로 내풍케이블의 배치를 다양하게 적용하여 동적 풍하중이 가설 중 사장교에 미치는 영향을 전교모형실험을 통해 검토하였으며 이를 위해 풍속 별로 캔틸레버 단부의 정적 및 동적 변위, 주탑상부의 가속도 그리고 주탑 하단부의 교축방향 휨모멘트를 산정하였다. 연구 결과 캔틸레버 당 두 세트의 수직 내풍케이블이 가장 효과적인 제진대책임을 알 수 있었다. 캔틸레버 한 쪽 길이가 약 105m인 경우 한 세트의 수직 내풍케이블도 상당한 제진효과를 발휘하였으며 캔틸레버 길이가 200m 이상의 경우 수직케이블과 우물통 경사케이블이 조합된 경우와 캔틸레버 당 두 세트의 경사 내풍케이블도 좋은 제진방안으로 판단된다. 우물통 상단에 연결되는 경사케이블은 캔틸레버 단부 부근에 설치된 경우에만 어느 정도 제진효과가 나타났다.