• Title/Summary/Keyword: vertical current structure

Search Result 215, Processing Time 0.029 seconds

Seismic response of current RC buildings in Kathmandu Valley

  • Chaulagain, Hemchandra;Rodrigues, Hugo;Spacone, Enrico;Varum, Humberto
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.791-818
    • /
    • 2015
  • RC buildings constitute the prevailing type of construction in earthquake-prone region like Kathmandu Valley. Most of these building constructions were based on conventional methods. In this context, the present paper studied the seismic behaviour of existing RC buildings in Kathmandu Valley. For this, four representative building structures with different design and construction, namely a building: (a) representing the non-engineered construction (RC1 and RC2) and (b) engineered construction (RC3 and RC4) has been selected for analysis. The dynamic properties of the case study building models are analyzed and the corresponding interaction with seismic action is studied by means of non-linear analyses. The structural response measures such as capacity curve, inter-storey drift and the effect of geometric non-linearities are evaluated for the two orthogonal directions. The effect of plan and vertical irregularity on the performance of the structures was studied by comparing the results of two engineered buildings. This was achieved through non-linear dynamic analysis with a synthetic earthquake subjected to X, Y and $45^{\circ}$ loading directions. The nature of the capacity curve represents the strong impact of the P-delta effect, leading to a reduction of the global lateral stiffness and reducing the strength of the structure. The non-engineered structures experience inter-storey drift demands higher than the engineered building models. Moreover, these buildings have very low lateral resistant, lesser the stiffness and limited ductility. Finally, a seismic safety assessment is performed based on the proposed drift limits. Result indicates that most of the existing buildings in Nepal exhibit inadequate seismic performance.

Oceanographic Studies Related to the Tidal front in the Mid-Yellow Sea off Korea: Physical Aspects (황해 중부의 조석전선과 연관된 해양학적 연구 : 물리적 특성)

  • SEUNG, YOUNG HO;CHUNG, JUNG HO;PARK, YONG CHUL
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.84-95
    • /
    • 1990
  • Observations by CTD castings, moored current meters and satellite imageries reveal some physical characteristics of the area around the tidal mixing front found in the mid-Yellow Sea off Korea. Tidal mixing is the greatest at the promontory of Taean Peninsula with a front around it. The front appears in April with the start of solar heating, becomes most clear in August and disappears in November with the start of surface cooling. In the north of the front, tidal fluctuations of temperature and salinity induced by tidal currents manifest the existence of the front, Differently from the usual tidal mixing front, the front in Kyunggi Bay is formed by presence of the water discharged from the Han River which meets the offshore water at the front. Near the surface cold center, vertically well-mixed zone extends to about 50 Km offshore from the coast, Farther south, this structure is generally retained but with lesser degree of vertical mixing. Within the relatively well-fixed coastal zone, the fresh water discharged from the Kum River makes another salinity front of smaller extent. At some places around this salinity front, an Upwelling-like feature is remarked.

  • PDF

Development of a Low Frequency Accelerometer using the Fiber Bragg Grating Sensor (Fiber Bragg Grating 센서를 이용한 저진동 가속도계 개발)

  • Pack, In-Seok;Kang, Han-Bin;Lee, Kye-Kwang;Lee, Seok-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1101-1109
    • /
    • 2012
  • Accelerometers play a key role in the structural assessment. However, the current electric type accelerometers have certain limitations to apply some structures such as heavy cabling labor, installed sea structure and sensitivity to electromagnetic fields. An optical Fiber Bragg Grating (FBG) accelerometer has many advantages over conventional electrical sensors since their immunity to electromagnetic interference and their capability to transmit signals over long distance without any additional amplifiers, and there is no corrosion from sea water. In this paper, we have developed a new FBG-based accelerometer. The accelerometer consists of two cantilevered type beams and a mass and two rollers. A bragg grating element is not directly glued to a cantilever to avoid possible non-uniform strain in the element. Instead, the bragg grating element will be attached to rotation part that rolled inducing vertical movement of the mass and support cantilever beams so that the bragg grating element is uniformly tensioned to achieve a constant strain distribution. After manufacturing, we will prove the performance and the natural frequency of the accelerometer through the experiment with a vibration shaker. The FBG-based accelerometer is developed for measuring the vibration not exceeding 50 Hz for the marine and civil structures.

Axial Load Test on Rectangular CFT Columns using High-Strength Steel and Slender Section (세장 단면의 고강도 강관을 적용한 각형 CFT 기둥의 압축실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.219-229
    • /
    • 2015
  • An experimental study was performed for thin-walled rectangular concrete-filled tubular (CFT) columns. The present study mainly focused on evaluation of the axial load-carrying capacity of concrete-filled tubular columns using high-strength steel and slender section. The test parameters were width-to-thickness ratio, concrete strength, steel yield strength, and the use of stiffeners. Five specimens were tested under monotonic axial loading. Although elastic local buckling occurred in the slender-section specimens with high-strength steel, the specimens exhibited considerable post-buckling reserve. The test results also satisfied the predictions of a current design code. The specimens strengthened with vertical stiffeners exhibited improved strength and ductility when compared with the un-stiffened specimens.

Sensitivity Improvement of 3-D Hall Sensor using Anisotropic Etching and Ni/Fe Thin Films (트랜치 구조를 갖는 3차원 홀 센서의 감도 개선에 관한 연구)

  • 이지연;최채형
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2001
  • The 3-D Hall sensor has two horizontal magnetic field sensing parts ($\chi$, y components) and one vertical magnetic field sensing part (z component). For conventional, 3-D Hall sensor it is general that the sensitivity for $B_{z}$ is about 1/10 compared with those for $B_\chi$ or $B_y$. Therefore, in this work, we proposed 3-D Hall sensor with new structure. We have increased the sensitivity about 6 times to form the trench using anisotropic etching. And we have increased the sensitivity for the $B_z$ by 80% compared with those of $B_\chi$ and$B_y$ using deposition of the ferromagnetic thin films on the bottom surface of the wafer to concentrate the magnetic fluxes. When the input current was 3 mA, sensitivities of the fabricated sensor with Ni/Fe film for $B_\chi, B_y$ and $B_{z}$ were measured as 120.1 mV/T, 111.7 mV/T, 95.3 mV/T, respectively. The measured linearity of the sensor was within $\pm$3% of error.

  • PDF

The characteristics of DROS magnetometer and MCG measurement (DROS 자력계의 동작특성 및 심자도 측정)

  • Kang, C.S.;Lee, Y.H.;Kwon, H.;Kim, J.M.;Yu, K.K.;Park, Y.K.;Lee, S.G.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.164-168
    • /
    • 2007
  • We developed a SQUID magnetometer based on Double Relaxation Oscillation SQUID(DROS) for measuring magnetocardiography(MCG). Since DROS provides a 10 times larger flux-to-voltage transfer coefficient than the conventional DC-SQUID, simple flux-locked loop electronics could be used for SQUID operation. Especially, we adopted an external feedback to eliminate the magnetic coupling with adjacent channels. When the DROS magnetometer was operated inside a magnetically shielded room, average magnetic field noise was about 5 $fT/^{\surd}Hz$ at 100 Hz. Using the DROS magnetometer, we constructed a multichannel MCG system. The system consisted of 61 magnetometers are arranged in a hexagonal structure and measures a vertical magnetic-field component to the chest surface. The distance between adjacent channels is 26 mm and the magnetometers cover a circular area with a diameter of 208 mm. We recorded the MCG signals with this system and confirmed the magnetic field distribution and the myocardinal current distribution.

  • PDF

Investigation of stiffening scheme effectiveness towards buckling stability enhancement in tubular steel wind turbine towers

  • Stavridou, Nafsika;Efthymiou, Evangelos;Gerasimidis, Simos;Baniotopoulos, Charalampos C.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1115-1144
    • /
    • 2015
  • Current climate conditions along with advances in technology make further design and verification methods for structural strength and reliability of wind turbine towers imperative. Along with the growing interest for "green" energy, the wind energy sector has been developed tremendously the past decades. To this end, the improvement of wind turbine towers in terms of structural detailing and performance result in more efficient, durable and robust structures that facilitate their wider application, thus leading to energy harvesting increase. The wind tower industry is set to expand to greater heights than before and tapered steel towers with a circular cross-section are widely used as more capable of carrying heavier loads. The present study focuses on the improvement of the structural response of steel wind turbine towers, by means of internal stiffening. A thorough investigation of the contribution of stiffening rings to the overall structural behavior of the tower is being carried out. These stiffening rings are placed along the tower height to reduce local buckling phenomena, thus increasing the buckling strength of steel wind energy towers and leading the structure to a behavior closer to the one provided by the beam theory. Additionally to ring stiffeners, vertical stiffening schemes are studied to eliminate the presence of short wavelength buckles due to bending. For the purposes of this research, finite element analysis is applied in order to describe and predict in an accurate way the structural response of a model tower stiffened by internal stiffeners. Moreover, a parametric study is being performed in order to investigate the effect of the stiffeners' number to the functionality of the aforementioned stiffening systems and the improved structural behavior of the overall wind converter.

Study on the behaviour of pre-existing single piles to adjacent shield tunnelling by considering the changes in the tunnel face pressures and the locations of the pile tips

  • Jeon, Young-Jin;Jeon, Seung-Chan;Jeon, Sang-Joon;Lee, Cheol-Ju
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.187-200
    • /
    • 2020
  • In the current work, a series of three-dimensional finite element analyses have been conducted to investigate the behaviour of pre-existing single piles in response to adjacent tunnelling by considering the tunnel face pressures and the relative locations of the pile tips with respect to the tunnel. Via numerical modelling, the effect of the face pressures on the pile behaviour has been analysed. In addition, the analyses have concentrated on the ground settlements, the pile head settlements and the shear stress transfer mechanism at the pile-soil interface. The settlements of the pile directly above the tunnel crown (with a vertical distance between the pile tip and the tunnel crown of 0.25D, where D is the tunnel diameter) with a face pressure of 50% of the in situ horizontal soil stress at the tunnel springline decreased by approximately 38% compared to the corresponding pile settlements with the minimum face pressure, namely, 25% of the in situ horizontal soil stress at the tunnel springline. Furthermore, the smaller the face pressure is, the larger the tunnelling-induced ground movements, the axial pile forces and the interface shear stresses. The ground settlements and the pile settlements were heavily affected by the face pressures and the positions of the pile tip with respect to the tunnel. When the piles were inside the tunnel influence zone, tensile forces were induced on piles, while compressive pile forces were expected to develop for piles that are outside the influence zone and on the boundary. In addition, the computed results have been compared with relevant previous studies that were reported in the literature. The behaviour of the piles that is triggered by adjacent tunnelling has been extensively examined and analysed by considering the several key features in substantial detail.

Current Status and Improvement of the Fast Imaging Solar Spectrograph of the 1.6m telescope at Big Bear Solar Observatory

  • Park, Hyungmin;Chae, Jongchul;Song, Donguk;Yang, Heesu;Jang, Bi-Ho;Park, Young-Deuk;Nah, Jakyoung;Cho, Kyung-Suk;Ahn, Kwangsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.112.2-112.2
    • /
    • 2012
  • For the study of fine-scale structure and dynamics in the solar chromosphere, the Fast Imaging Solar Spectrograph (FISS) was installed in 1.6m New Solar Telescope at Big Bear Solar Observatory in 2010. The instrument, installed at a vertical table of the Coude lab, is properly working and producing data for science. From the analysis of the data, however, we noticed that a couple of problems exist that deteriorate image quality : lower light level and poorer resolution of the CaII band data. After several tests, we found that the relay optics at the right position is crucial role for the spatial resolution of raster-scan images. By using resolution target, we re-aligned relay optics and other components of the spectrograph. Here we present the result of optical test and new data taken by the FISS.

  • PDF

Electroplating process for the chip component external electrode

  • Lee, Jun-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1-2
    • /
    • 2000
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the onventional rotating barrel, vibrational barrel(vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components. The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed thatbthe average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value. Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components. However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. 2H20 + e $\rightarrow$M/TEX> 20H + H2.. Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure there by resulting to bad plating condition.

  • PDF