• Title/Summary/Keyword: vertical column

Search Result 554, Processing Time 0.033 seconds

A Study on the Bearing Capacity characteristics of Stone column by Numerical Analysis (수치해석에 의한 쇄석말뚝의 지지력 특성 고찰)

  • Chun, Byung-Sik;Kim, Baek-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.90-99
    • /
    • 2004
  • Stone column is one of the soft ground improvement method, which enhances ground conditions through ground water draining, settlement reducing and bearing capacity increasing complexly by using crushed stone instead of sand in general vertical drain methods. In recent, general construction material, sand is in short of supply, because of the unbalance of demand and supply. Also, the bearing capacity improving effect of stone column method is needed in many cases so the bearing capacity estimation is considered as important point. Nevertheless, adequate estimation methods to predict bearing capacity of stone column considering stone column and improving ground behavior reciprocally is not yet prepared. To contribute this situation, bearing capacity behavior of stone column were simulated as numerically on various property cases of crushed stone and surrounded ground. Through the numerical analysis of simulation results, bearing capacity behavior prediction formula was suggested. This formula was verified by comparing the prediction result with in situ test.

  • PDF

Vibration Characteristics of Liquid Column Vibration Absorber with Various Area Ratio (다양한 수평 수직 단면적비를 가지는 LCVA의 진동특성 평가)

  • Chung, Lan;Lee, Joung-Woo;Park, Hyun-Chin;Lee, Sang-Hyun;Woo, Sung-Sik;Cho, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.121-125
    • /
    • 2007
  • LCVA has an advantage that its natural frequency can be easily controlled by changing the area ratio of the vertical column and horizontal part. The previous studies investigated the dynamic characteristics of the LCVA under harmonic load. This study experimentally obtained the first and second mode natural frequencies of the LCVA from shaking table tests using white noise and compared the values with the ones by previous study. Test results show that the measured first mode natural frequency of the LCVA is larger than the calculated one when the area ratio is larger than 1. The second mode frequency increases with the increasing area ratio, which is due to the sloshing motion effect resulting from the large area of the vertical column.

  • PDF

Static and Dynamic Characteristics of Magnetically Preloaded Air Bearing Stage for a 3-Axis Micro-Machine Tool (3축 마이크로 공작기계용 자기예압 공기베어링 스테이지의 정, 동적 특성)

  • Ro Seung-Kook;Ehmann Kornel F.;Yoon Hyung-Suk;Park Jong-Kweon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.468-472
    • /
    • 2005
  • In this paper, the static and dynamic stiffness of the air bearing stage for micro-micro machine tool are examined experimentally. For stiffness and precision concerns, air bearing stages are adapted for 3-axis micro-milling machine which is size of $200x200\;mm^2$. The air bearings in the stage are preloaded by permanent magnets to achieve desired bearing clearance and stiffness for vertical direction. As the stiffness of the air bearing is primary interests, static stiffness test were performed on XY stage in Z direction and Z column in Y direction. Dynamic test were performed on XY stage and Z column, respectively. Both static and dynamic tests were performed in different air pressure conditions. The vertical stiffness of XY stage is about 9 N/ pm where Y stiffness of Z column is much smaller as $1\;N/{\mu}m$ because of the large moment generated by Y force on the column.

  • PDF

Average Correction for Compensation of Differential Column Shortening in High-rise Buildings (이동 평균법을 이용한 고층 건물의 부등축소량 보정 기법)

  • Park, Sung-Woo;Choi, Se-Woon;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.395-401
    • /
    • 2010
  • The vertical members of structures are shortened as time goes on. Because structures have been high-rising and atypical there should be different axial loads among vertical members and it causes differential column shortenings. The differential column shortening add stresses to connections, make slab tilt, and damage to non-structural components. To reduce these influences compensation is need. The rational compensation means the exact expectation of amounts of column shortenings and the reasonable corrections. The expectation of column shortenings are more exact as researched, however, there is little research about the compensation. This paper presents the average correction method and the constraints for differential column shortenings considering errors due to the construction precision. The relations between constraints and the number of correction groups give an objective criterion for decision of constraints.

Seismic loss-of-support conditions of frictional beam-to-column connections

  • Demartino, Cristoforo;Monti, Giorgio;Vanzi, Ivo
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.527-538
    • /
    • 2017
  • The evaluation of the loss-of-support conditions of frictional beam-to-column connections using simplified numerical models describing the transverse response of a portal-like structure is presented in this paper considering the effects of the seismic-hazard disaggregation. Real earthquake time histories selected from European Strong-motion Database (ESD) are used to show the effects of the seismic-hazard disaggregation on the beam loss-of-support conditions. Seismic events are classified according to different values of magnitudes, epicentral distances and soil conditions (stiff or soft soil) highlighting the importance of considering the characteristics of the seismic input in the assessment of the loss-of-support conditions of frictional beam-to-column connections. A rigid and an elastic model of a frame of a precast industrial building (2-DoF portal-like model) are presented and adopted to find the minimum required friction coefficient to avoid sliding. Then, the mean value of the minimum required friction coefficient with an epicentral distance bin of 10 km is calculated and fitted with a linear function depending on the logarithm of the epicentral distance. A complete parametric analysis varying the horizontal and vertical period of vibration of the structure is performed. Results show that the loss-of-support condition is strongly influenced by magnitude, epicentral distance and soil conditions determining the frequency content of the earthquake time histories and the correlation between the maxima of the horizontal and vertical components. Moreover, as expected, dynamic characteristics of the structure have also a strong influence. Finally, the effect of the column nonlinear behavior (i.e. formation of plastic hinges at the base) is analyzed showing that the connection and the column are a series system where the maximum force is limited by the element having the minimum strength. Two different longitudinal reinforcement ratios are analyzed demonstrating that the column strength variation changes the system response.

Numerical study on force transfer mechanism in through gusset plates of SCBFs with HSS columns & beams

  • Ebrahimi, S.;Zahrai, S.M.;Mirghaderi, S.R.
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.541-558
    • /
    • 2019
  • In Special Concentrically Braced Frames (SCBFs), vertical and horizontal components of the brace force must be resisted by column and beam, respectively but normal force component existing at the gusset plate-to-column and beam interfaces, creates out-of-plane action making distortion in column and beam faces adjacent to the gusset plate. It is a main concern in Hollow Structural Section (HSS) columns and beams where their webs and gusset plate are not in the same plane. In this paper, a new gusset plate passing through the HSS columns and beams, named as through gusset plate, is proposed to study the force transfer mechanism in such gusset plates of SCBFs compared to the case with conventional gusset plates. For this purpose, twelve SCBFs with diagonal brace and HSS columns and twelve SCBFs with chevron brace and HSS columns and beams are considered. For each frame, two cases are considered, one with through gusset plates and the other with conventional ones. Based on numerical results, using through gusset plates prevents distortion and out-of-plane deformation at HSS column and beam faces adjacent to the gusset plate helping the entire column and beam cross-sections to resist respectively vertical and horizontal components of the brace force. Moreover, its application increases energy dissipation, lateral stiffness and strength around 28%, 40% and 32%, respectively, improving connection behavior and raising the resistance of the normal force components at the gusset plate-to-HSS column and beam interfaces to approximately 4 and 3.5 times, respectively. Finally, using such through gusset plates leads to better structural performance particularly for HSS columns and beams with larger width-to-thickness ratio elements.

Exploring the Dynamics of Dissolved Oxygen and Vertical Density Structure of Water Column in the Youngsan Lake (인공호소인 영산호의 용존산소 분포와 수층 성층구조의 연관성 분석)

  • Song, Eun-Sook;Cho, Ki-An;Shin, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.163-174
    • /
    • 2015
  • The Youngsan Lake was constructed to supply agricultural water to the extensive rice fields in the basin of the lake in 1981. Hypoxia has often developed in the bottom water of the lake during the warm season although the water depth is relatively shallow (< 16 m). We investigated the spatial and temporal variations of dissolved oxygen (DO) and physical properties such as water temperature, salinity and turbidity to elucidate the effects of change in physical properties on DO dynamics in the lake. Vertical profiles of DO, temperature, salinity, and water density were also explored to verify the development of stratification in relation to DO variation in the water column. Hypoxia (DO < $2mg\;L^{-1}$) was not observed in the upper regions whereas hypoxia was detected in the lower regions during the warm season. Thermocline generally developed in the lower regions during the warm season unlike the previous studies in which no thermocline was observed. However, water column was well mixed when freshwater water was discharged from the reservoir through the sluice gate of the dike. DO concentrations also decreased when halocline or pycnocline developed during the dry season suggesting that the vertical stratification of water column affects DO dynamics although the water depth is shallow in the Youngsan lake.

Shaking table test and horizontal torsional vibration response analysis of column-supported vertical silo group silo structure

  • Li, Xuesen;Ding, Yonggang;Xu, Qikeng
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.377-389
    • /
    • 2021
  • Reinforced concrete vertical silos are universal structures that store large amounts of granular materials. Due to the asymmetric structure, heavy load, uneven storage material distribution, and the difference between the storage volume and the storage material bulk density, the corresponding earthquake is very complicated. Some scholars have proposed the calculation method of horizontal forces on reinforced concrete vertical silos under the action of earthquakes. Without considering the effect of torsional effect, this article aims to reveal the expansion factor of the silo group considering the torsional effect through experiments. Through two-way seismic simulation shaking table tests on reinforced concrete column-supported group silo structures, the basic dynamic characteristics of the structure under earthquake are obtained. Taking into account the torsional response, the structure has three types of storage: empty, half and full. A comprehensive analysis of the internal force conditions under the material conditions shows that: the different positions of the group bin model are different, the side bin displacement produces a displacement difference, and a torsional effect occurs; as the mass of the material increases, the structure's natural vibration frequency decreases and the damping ratio Increase; it shows that the storage material plays a role in reducing energy consumption of the model structure, and the contribution value is related to the stiffness difference in different directions of the model itself, providing data reference for other researchers; analyzing and calculating the model stiffness and calculating the internal force of the earthquake. As the horizontal side shift increases in the later period, the torsional effect of the group silo increases, and the shear force at the bottom of the column increases. It is recommended to consider the effect of the torsional effect, and the increase factor of the torsional effect is about 1.15. It can provide a reference for the structural safety design of column-supported silos.

A Study of Shear Reinforcement for Slab-Column Connection (슬래브-기둥 접합부의 전단보강상세에 관한 연구)

  • Baek, Sung-Woo;Kim, Jun-Seo;Choi, Hyun-Ki;Choi, Chang-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.37-40
    • /
    • 2008
  • The study is an experimental test on full-scale flat plate slab-column interior connection. The punching shear on the flat plate slab-column connection can bring about the reason of the brittle punching shear failure which may result of collapsing the whole structure. From the development of residential flat plate system, the shear reinforcement is developed for preventing the punching shear. For making sure of the punching shear capacity, developed for shear reinforcement in slab-column connection, the structural test is performed. The dimension of the slabs was 2620*2725*180mm with square column (600*800mm). The slabs were tested up to failure monotonic vertical shear forces. The presences of S/S bar and wire mesh substantially increased the punching shear capacity and the ductility of the slab-column connections.

  • PDF