• Title/Summary/Keyword: vertical bearing capacity

Search Result 226, Processing Time 0.026 seconds

Numerical Analysis of Effect of Waveform Micropile on Foundation Underpinning During Building Vertical Extension Remodeling (수치해석을 통한 수직증축 리모델링시 파형 마이크로파일의 보강효과 분석)

  • Wang, Cheng-Can;Jang, Youngeun;Kim, Seok-Jung;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.335-344
    • /
    • 2019
  • Micropiles are widely used for foundation underpinning to enhance bearing capacity and reduce settlement of existing foundation. In this study, the main objective is to evaluate underpinning performance of a newly developed micropile called waveform micropile for foundation underpinning during vertical extension. Finite element method (FEM) was used to evaluate the underpinning performance of waveform micropile in terms of load-settlement response of underpinned foundation and load sharing behavior. For comparison, underpinning effects of three conventional micropiles with different lengths were also discussed in this study. Numerical results of load-settlement response for single pile demonstrated that bearing capacity and axial stiffness of waveform micropiles were higher than those of conventional micropiles because of the effect of shear keys of waveform micropiles. When additional loads 20 %, which is according to design loads of the vertical extension, were applied to the underpinned foundation, load sharing capacity of waveform micropile was 40 % higher than conventional micropile at the same size. The waveform micropile also showed better underpinning performance than the conventional micropile of length 1~1.5 times of waveform micropile.

Full-scale tests and finite element analysis of arched corrugated steel roof under static loads

  • Wang, X.P.;Jiang, C.R.;Li, G.Q.;Wang, S.Y.
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.339-354
    • /
    • 2007
  • Arched Corrugated Steel Roof (ACSR) is a kind of thin-walled steel shell, composing of arched panels with transverse small corrugations. Four full-scale W666 ACSR samples with 18m and 30m span were tested under full and half span static vertical uniform loads. Displacement, bearing capacities and failure modes of the four samples were measured. The web and bottom flange in ACSR with transverse small corrugations are simplified to anisotropic curved plates, and the equivalent tensile modulus, shear modulus and Poisson's ratio of 18m span ACSR were measured. Two 18 m-span W666 ACSR samples were analyzed with the Finite Element Analysis program ABAQUS. Base on the tests, the limit bearing capacity of ACSR is low, and for half span loading, it is 74-75% compared with the full span loading. When the testing load approached to the limit value, the bottom flange at the sample's bulge place locally buckled first, and then the whole arched roof collapsed suddenly. If the vertical loads apply along the full span, the deformation shape is symmetric, but the overall failure mode is asymmetric. For half span vertical loading, the deformation shape and the overall failure mode of the structure are asymmetric. The ACSR displacement under the vertical loads is large and the structural stiffness is low. There is a little difference between the FEM analysis results and testing data, showing the simplify method of small corrugations in ACSR and the building techniques of FEM models are rational and useful.

Behavior of Model Sheet Piles under Vertical Loads (수직하중을 받는 모형 강널말뚝의 거동)

  • 윤여원;김두균
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.5-16
    • /
    • 1998
  • In order to study the behavior of the sheet pile under vertical load in sands, model pile tests using calibration chamber are performed. For this research, five model piles, with the same section area and different degree of inclination of flange, were made. And model pile tests were conducted for each of these piles with different relative density and direction of applied load. For model pile which has the same shape, compression capacity is about 100% higher than pullout capacity and the difference increases with increasing relative density. Pullout ultimate capacity and corresponding displacement increase with increasing relative density and the pullout capacities remained almost the same irrespective of the inclination of flanges for the same density. The ultimate capacity under compression load is highest at 30$^{\circ}$ of inclination of flanges and the trend is more evident with increasing relative density. From the analysis of load distribution, the higher loading capacity at 30$^{\circ}$ of inclination of flanges with same section area may be attributed to the partial soil plug between flanges.

  • PDF

New Design Method for Pile Group under Vertical Load (연직하중을 받는 무리말뚝의 새로운 설계 방법)

  • 이수형;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.06a
    • /
    • pp.11-29
    • /
    • 2002
  • Current design of pile group is based on the estimation of the overall bearing capacity of a pile group from that of a single pile using a group efficiency. However, the behaviors of a pile group are influenced by various factors such as method of pile installation, pile-soil-pile interaction, cap-soil-pile interaction, etc. Thus it is practically impossible to take into account these factors reasonably with the only group efficiency, In this paper, a new method for the design of pile groups is proposed, where the significant factors affecting the behavior of a pile group are considered separately by adopting several efficiencies. Furthermore, in the proposed method, the load transfer characteristics of piles and the difference of pile behaviors with respect to the pile locations in group can be taken into account. The efficiencies for the method are determined using the settlement failure criterion, which is consistent with the concept of allowable settlement for structures. The efficiencies calculated from the results of existing model tests are presented, and the bearing capacity of a pile group in the other model test is calculated and compared with that from the test result, to verify the validity of the proposed method.

  • PDF

The Analysis of the Mechanical Characteristic of Bamboo Net (대나무 망의 역학적 특성분석)

  • Yang, Kee-Sok;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.29-37
    • /
    • 2009
  • Examining the mechanical characteristic of the bamboo net structure is necessary in order to evaluate the influence of bending rigidity of bamboo on bearing capacity, however, there is no equipment to examine such mechanical behavior of the bamboo net structure in the world. In this study, a specific equipment to examine stress-strain behavior characteristics of the structure of bamboo net is developed. In comparison with Bamboo's stress-strain behavior characteristic and vertical stress caused by various dozer equipments, the case of estimating minimum embedded depth considering ground settlement is analyzed.

Pushover Analysis of Bearing Wall System with Macroscopic Models - For Comparisons of 2D and 3D Analysis Modelling (거시적 모델을 이용한 내력벽 시스템의 Pushover 해석 - 2차원과 3차원 해석 모델링의 비교)

  • Lee, Young-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.329-332
    • /
    • 2006
  • To study the effect of the macroscopic TVLEM(Three Vertical Line Element Model) which is developed in 2D, a bearing wall system is selected and 2D and 3D pushover analyses are carried out. In 2D model, the participating width of a flage wall to lateral resistance is modelled based on Paulay's effective width. From the comparisons of roof displacements, 2D model which uses the effective width of flange wall has better prediction and less analysis time than 3D model which has intrinsically the full width of the flange that causes higher stiffness and strength and shorter deformation capacity than 2D model.

  • PDF

Design and analysis of slotted shear walls equipped with energy dissipating shear connectors

  • Shen, Shaodong;Nie, Xin;Pan, Peng;Wang, Haishen
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.539-544
    • /
    • 2017
  • Shear walls have high stiffness and strength; however, they lack energy dissipation and repairability. In this study, an innovative slotted shear wall featuring vertical slots and steel energy dissipation connectors was developed. The ductility and energy dissipation of the shear wall were improved, while sufficient bearing capacity and structural stiffness were retained. Furthermore, the slotted shear wall does not support vertical forces, and thus it does not have to be arranged continuously along the height of the structure, leading to a much free arrangement of the shear wall. A frame-slotted shear wall structure that combines the conventional frame structure and the innovative shear wall was developed. To investigate the ductility and hysteretic behavior of the slotted shear wall, finite element models of two walls with different steel connectors were built, and pushover and quasi-static analyses were conducted. Numerical analysis results indicated that the deformability and energy dissipation were guaranteed only if the steel connectors yielded before plastic hinges in the wall limbs were formed. Finally, a modified D-value method was proposed to estimate the bearing capacity and stiffness of the slotted shear wall. In this method, the wall limbs are analogous to columns and the connectors are analogous to beams. Results obtained from the modified D-value method were compared with those obtained from the finite element analysis. It was found that the internal force and stiffness estimated with the modified D-value method agreed well with those obtained from the finite element analysis.

Calculation of Bearing Capacity of Tapered Drilled Shafts in Cohesionless Soils Using Shape Factor (형상계수를 이용한 사질토 지반에 타설된 테이퍼말뚝의 지지력 산정)

  • Paik, Kyu-Ho;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.13-22
    • /
    • 2008
  • Fourteen calibration ehamber tests were performed using one cylindrical and two tapered piles with different taper angles to investigate the changes of the bearing capacity of tapered piles with soil state and taper angle of piles. The results of calibration chamber tests show that the ultimate base resistance of tapered piles increases with increasing mean stress and relative density of soil. It also increases with increasing taper angle for medium sand, but with decreasing taper angle for dense sand. The ultimate shaft resistance of tapered piles increases as vertical and horizontal stresses, relative density and taper angle increase. Based on the results of model pile load tests, a new design method with shape factors for estimation of the bearing capacity of tapered piles is proposed considering the effect of soil state and taper angle on bearing capacity of tapered piles. In order to check the accuracy of predictions calculated using the new method, middle-scale field pile load tests were also conducted on cylindrical and tapered drilled shafts in clayey sand. Comparison of calculated values with measured ones shows that the new design method produces satisfactory predictions tor tapered piles.

A study on Underground and Above-ground Extensions of Buildings using Jack-piles (잭파일을 활용한 건축물의 지하 및 지상증축에 관한 연구)

  • Kang, Seong-Jin;Byun, hang Yong;Hwang, Tae-il;Sho, Kwang-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.23-24
    • /
    • 2022
  • There are many demands for vertical extension construction method in domestic large cities. In this paper, we analyzed and presented the results of examining the cases of ground floor extension and basement extension using the jack pile method. Since the Jack Pile method presses in all the piles without excavating the ground, the bearing capacity of the all the piles can be checked. It was investigated as a safe construction method unlike other small-diameter pile construction methods during underground extension.

  • PDF

Research of Circuit Working Construction Elevator with Single-guide Rail and Multi-cages

  • Kun Zhang;Kaiqiang Wang;Di Li;Qing Sun;Zhen Ye;Wei Liu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.2
    • /
    • pp.137-144
    • /
    • 2022
  • As one of the most important vertical transportation equipment in super high-rise buildings, the construction elevator directly affects the project period, cost, and effectiveness. The paper proposes a new construction elevator with single-guide rail and multi-cages. It can solve the problems of single construction elevator capacity shortage and efficacy decrease with height reduction, the occupancy of plan and elevation position of multiple construction elevators, and extension of total construction period by cycling operation of multi-cages on a single-guide rail. The paper focuses on the design and research of the main components of the equipment, such as the rotating guide rail mechanism, vertical bearing mast tie system, segmented electrical power supply system, group control scheduling system, and safety anti-collision system.