• Title/Summary/Keyword: ventricular assist

Search Result 133, Processing Time 0.022 seconds

Control of Left Ventricular Assist Device Using Neural Network Feedforward Controller (인공신경망 Feedforward 제어기를 이용한 좌심실 보조장치의 제어실험)

  • 정성택;김훈모;김상현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.83-90
    • /
    • 1998
  • In this paper, we present neural network for control of Left Ventricular Assist Device(LVAD) system with a pneumatically driven mock circulation system. Beat rate(BR), Systole-Diastole Rate(SDR) and flow rate are collected as the main variables of the LVAD system. System modeling is completed using the neural network with input variables(BR, SBR, their derivatives, actual flow) and output variable(actual flow). It is necessary to apply high perfomance control techniques, since the LVAD system represent nonlinear and time-varing characteristics. Fortunately. the neural network can be applied to control of a nonlinear dynamic system by learning capability In this study, we identify the LVAD system with neural network and control the LVAD system by PID controller and neural network feedforward controller. The ability and effectiveness of controlling the LVAD system using the proposed algorithm will be demonstrated by experiment.

  • PDF

Control of Left Ventricular Assist Device using Neural Network Feedback Feedforward Controller (인공신경망 Feedforward제어기를 이용한 좌심실보조장치의 제어실험)

  • 정성택;류정우;김상현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.150-155
    • /
    • 1997
  • In this paper,we present neural network for control of Left Ventricular Assist Device(LVAD)system with a pneumatically driven mock cirulation system. It is necessary to apply high perfomance control techniques, since the LVAD system represent nonlinear and time-varing characteristics. Fortunately, the neural network can be applied to control of a nonliner dynamic system by learning capability. In this study,we identify the LVAD system with neural network and control the LVAD system by PID controller and neural network feedforward controller. The ability and effectiveness of controlling the LVAD system using the proposed algorithm will be demonstrated by computer simulation and experiment.

  • PDF

Control of Left Ventricular Assist Device using Artificial Neural Network (인공신경망을 이용한 좌심실보조장치의 제어)

  • 류정우;김훈모;김상현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.260-266
    • /
    • 1996
  • In this paper, we presents neural network identification and control of highly complicated nonlinear Left Ventricular Assist Device(LVAD) system with a pneumatically driven mock circulation system. Generally the LVAD system need to compensate nonlinearities. Hence, it is necessary to apply high performance control techniques. Fortunately, the neural network can be applied to control of a nonlinear dynamic system by learning capability. In this study, we identify the LVAD system with Neural Network Identification. Once the NNI has learned the dynamic model of LVAD system, the other network, called Neural Network Controller(NNC), is designed for control of a LVAD system. The ability and effectiveness of identifying and controlling a LVAD system using the proposed algorithm will be demonstrated by computer simulation.

  • PDF

PID control of left ventricular assist device (PID 제어기를 이용한 좌심실보조장치의 제어)

  • Jeong, Seong-Taek;Kim, Hun-Mo;Kim, Sang-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.315-320
    • /
    • 1998
  • In this paper, we present the PID control method for the controlling flow rate of highly complicated nonlinear Left Ventricular Assist Device(LVAD) with pneumatically driven mock circulatory system. Beat Rate (BR), Systole-Diastole Rate (SDR) and flow rate are used as the main variables of the LVAD system. System modeling is completed using the neural network with input variables (BR, SDR, their derivatives, actual flow) and an output valiable(actual flow). Then, as the basis of this model, we perform the simulation of PID control to predict the performance and tendency of the system and control the flow rate of LVAD system using the PID controller. The ability and effectiveness of identifying and controlling a LVAD system using the proposed algorithm will be demonstrated through computer simulation and experiments.

  • PDF

Successful Bridge to Heart Transplantation through Ventricular Assist Device Implantation and Concomitant Fontan Completion in a Patient with Glenn Physiology: A Case Report

  • Ji Hong Kim;Ji Hoon Kim;Ah Young Kim;Yu Rim Shin
    • Journal of Chest Surgery
    • /
    • v.57 no.3
    • /
    • pp.312-314
    • /
    • 2024
  • A 3-year-old boy with Glenn physiology exhibited refractory heart failure with reduced ejection fraction. To improve the patient's oxygen saturation, he underwent ventricular assist device (VAD) implantation with concomitant Fontan completion. The extracardiac conduit Fontan operation was performed with a 4-mm fenestration. For VAD implantation, Berlin Heart cannulas were positioned at the left ventricular apex and the neo-aorta. Following weaning from cardiopulmonary bypass, a temporary continuous-flow VAD, equipped with an oxygenator, was utilized for support. After a stabilization period of 1 week, the continuous-flow VAD was replaced with a durable pulsatile-flow device. Following 3 months of support, the patient underwent transplantation without complications. The completion of the Fontan procedure at the time of VAD implantation, along with the use of a temporary continuous-flow device with an oxygenator, may aid in stabilizing postoperative hemodynamics. This approach could contribute to a safe transition to a durable pulsatile VAD in patients with Glenn physiology.

Non-Surgical Resolution of Inflow Cannula Obstruction of a Left Ventricular Assist Device: A Case Report

  • Lee, Yoonseo;Sung, Kiick;Kim, Wook Sung;Jeong, Dong Seop;Shinn, Sung Ho;Cho, Yang Hyun
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.543-546
    • /
    • 2021
  • A 55-year-old woman who had received an implantable left ventricular assist device 3 months earlier presented with dyspnea and a low-flow alarm of the device. Computed tomography and log-file analysis of the device system suggested inflow cannula obstruction. Since the patient had cardiogenic shock due to pump failure, venoarterial extracorporeal membrane oxygenation (ECMO) was initiated. With ECMO, surgical exchange of the pump was considered. However, the obstruction spontaneously resolved without surgical intervention. It turned out that an obstructive thrombus was washed out by rebooting the pump. Moreover, the thrombus was embolized in the patient's left subclavian artery. The patient underwent heart transplantation 4 months after the pump obstruction accident and continued to do well.

Development of the Control Algorithm for Counterpulsation between a Moving-actuator type Bi-Ventricular Assist Device (AnyHeart) and a Natural Heart (한국형 심실 보조 인공심장과 자연심장 간의 counterpulsation 제어 알고리즘의 개발)

  • Nam, Kyoung Won;Choi, Seong Wook;Chung, Jinhan;Kim, Wook Eun;Min, Byoung Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • A Ventricular Assist Device(YAD) is used to support the injured natural heart So. when considering a control algorithm for YAD. it is important to reduce a natural heart's load to enhance its recovery condition. To reduce natural heart's load, a counterpulsation algorithm is used commonly. In this study, we developed a counterpulsation control algorithm for moving-actuator type VAD and tested its usefulness using in vitro MOCK circulatory system. To notice a natural heart's Pumping status, electrocardiogram(ECG) signal was used and as a result of test. the counterpulsation effect between YAD and a natural heart was occurred and Automatic Control Mode Transition was occurred properly.

Control Simulation of Left Ventricular Assist Device using Artificial Neural Network (인공신경망을 이용한 좌심실보조장치의 제어 시뮬레이션)

  • Kim, Sang-Hyeon;Jeong, Seong-Taek;Kim, Hun-Mo
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 1998
  • In this paper, we present a neural network identification and a control of highly complicated nonlinear left ventricular assist device(LVAD) system with a pneumatically driven mock circulation system. Generally, the LVAD system needs to compensate for nonlinearities. It is necessary to apply high performance control techniques. Fortunately, the neural network can be applied to control of a nonlinear dynamic system by learning capability. In this study, we identify the LVAD system with neural network identification(NNI). Once the NNI has learned the dynamic model of the LVAD system, the other network, called neural network controller(NNC), is designed for a control of the LVAD system. The ability and effectiveness of identifying and controlling the LVAD system using the proposed algorithm will be demonstrated by computer simulation.

  • PDF

Simulation Study of Blood Perfusion according to Outflow Cannulation Site of Left Ventricular Assist Device (좌심실보조장치의 출구 캐뉼라의 삽관 위치에 따른 혈액관류에 대한 시뮬레이션 연구)

  • Jee, In Hyeog;Kim, Hyeong Gyun;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.135-142
    • /
    • 2015
  • Outflow cannulation site of left ventricular assist device(LVAD) chosen by considering anatomical structure of thoracic cavity and vascular system. Though outflow cannulation site influences blood perfusion at each branch, there is no standard rule or quantitative data. In this study, we computed the amount of blood perfusion at each arterial branch numerically according to outflow cannulation sites(ascending aorta, aortic arch, descending aorta). We generated computational meshes to the three-dimensionally reconstructed arterial system. Clinically measured arterial pressure were used for inlet boundary condition, porous media were applied to mimic blood flow resistance. Blood perfusion through left common carotid artery was 2.5 times higher than other cases, and that through right common carotid artery was 1.1 times higher than other branches. Although this is simulation study, will be useful reference data for the clinical study of LVAD which considers blood perfusion efficiency.

Bridge to Transplantation with a Left Ventricular Assist Device

  • Jung, Jae-Jun;Sung, Ki-Ick;Jeong, Dong-Seop;Kim, Wook-Sung;Lee, Young-Tak;Park, Pyo-Won
    • Journal of Chest Surgery
    • /
    • v.45 no.2
    • /
    • pp.116-119
    • /
    • 2012
  • A 61-year-old female patient was diagnosed with dilated cardiomyopathy with severe left ventricle dysfunction. Two days after admission, continuous renal replacement therapy was performed due to oliguria and lactic acidosis. On the fifth day, an intra-aortic balloon pump was inserted due to low cardiac output syndrome. Beginning 4 days after admission, she was supported for 15 days thereafter with an extracorporeal left ventricular assist device (LVAD) because of heart failure with multi-organ failure. A heart transplant was performed while the patient was stabilized with the LVAD. She developed several complications after the surgery, such as cytomegalovirus pneumonia, pulmonary tuberculosis, wound dehiscence, and H1N1 infection. On postoperative day 19, she was discharged from the hospital with close follow-up and treatment for infection. She received follow-up care for 10 months without any immune rejection reaction.