• Title/Summary/Keyword: vent ratio

Search Result 49, Processing Time 0.026 seconds

A Study on Flow Characteristics of Polluted Air in Rectangular Tunnel Models Using a PIV System

  • Koh, Young-Ha;Park, Sang-Kyoo;Yang, Hei-Cheon;Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.825-832
    • /
    • 2010
  • The objective of this study is to investigate flow behaviors of polluted air in order to prevent the impact of disaster in a tunnel. This paper presents the experimental results qualitatively in terms of flow characteristics in two kinds of rectangular tunnel models in which each distance from the centerline above the inlet vent to the exhaust vent is 0 and 60 mm, respectively. The olive oil is used as the tracer particles. The flow is tested at the flow rate of $14.16{\times}10^{-4}\;m^3/s$ and the inlet vent velocity of 1.1 m/s with the kinematic viscosity of air. The aspect ratio of the model test section is 10. The average velocity vectors, streamlines, and vorticity distributions are measured and analyzed by the Flow Manager in a particle image velocimetry(PIV) system. The PIV technology gives three different velocity distributions according to observational points of view for understanding the polluted air flow characteristics. The maximum value of mean velocity generally occurs in the inlet and outlet vent regions in the tunnel models.

A Performance Study of Vent Mixer with Geometric Characteristics in Supersonic Flow (초음속 유동 내 벤트 혼합기의 형상적 특성에 따른 성능 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.69-75
    • /
    • 2009
  • This paper studies the aerodynamic performance that the vent mixer-new conceptual supersonic mixer-showed with its geometric characteristics. The hole is 2 mm with 2 mm's distance from the wall in case 1 and with no distance in case 2. In case 3 die hole is 1 mm. Case 1 and case 2 showed the same total pressure recovery ratio, of which the case 3 was lower than that. While cases 1-3 had the same reattachment length, the shear layer was thicker in cases 1 and 2 than in case 3. Within the recirculation zone, cases 1 and 2 had lower pressure loss and higher velocity gradient difference than case 3-they enhance mixing between air and fuel. Separation bubble which is developed by the inflow into the recirculation zone has a significant effect on the total pressure recovery ratio in the combustor. Also separation bubble influences pressure distributions and recirculation flows in the recirculation zone. Therefore, inflow rate of air into the recirculation zone mainly affects the performance of vent mixer.

Effects of Modified Installation Methods of Roof Ventilation Devices in the Single-span Plastic Greenhouses on Yield and Fruit Quality of Oriental Melon (단동 비닐하우스의 지붕 환기장치 설치방법 개선이 참외생육 및 과실수량에 미치는 영향)

  • Yeo, Kyung-Hwan;Yu, In-Ho;Choi, Gyeong Lee;Lee, Seong-Chan;Lee, Jae-Han;Park, Kyoungs Sub;Lee, Jung-Sup;Bekhzod, Khoshimkhujaev
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.334-342
    • /
    • 2016
  • In order to evaluate the modified installation methods of roof ventilation devices, derived from the previous experiment ('investigation into the optimum capacity of roof ventilation devices and their deployment'), the conventional and modified (improved) roof ventilation systems were installed in the single-span plastic greenhouse for growing oriental melons. The roof vents ($60{\varphi}$) and roof fans (maximum air capacity of $38m^3/min$) were installed in the spacing of 15m (FT, modified 'side vent+roof fan' ventilation) and 6m (TT, modified 'side vent+roof vent' ventilation) respectively on the roof of greenhouses for the modified roof ventilation treatments, and 20m (FC, conventional 'side vent+roof fan' ventilation) and 8m (TC, conventional 'side vent+roof vent' ventilation) for the conventional ones. The stem diameter, leaf blade lengh, petiole length, and leaf width were lower in the FT and TT treatments than those in the conventional treatments, FC and TC. Although the fruit weight and total yields were slightly lower in the FT and TT treatments, the marketable fruit ratio (%) were higher, as a result of increased fruiting ratio (%) in these treatments, than those of FC and TC. The marketable yields (kg/10a) in the FT and TT treatments were 8,391 kg/10a and 7,283 kg/10a, which were respectively 661 kg/10a and 487 kg/10a higher than those in the treatments of FC and TC. The modified installation methods of roof fan resulted in production of more female flowers and lower fruit drop ratio (%) compared to conventional meathods. In the treatment of the conventional ventilation with roof vent, the fruit weight, fruit length & width, and flesh thickness were higher than in other treatments, but there were no significant differences in the fruit width and flesh thickness among the treatments.

Analysis on Internal Airflow of a Naturally Ventilated Greenhouse using Wind Tunnel and PIV for CFD Validation (CFD 검증을 위한 풍동 및 PIV를 이용한 자연환기식 온실 내부 공기유동 분석)

  • Ha, Jung-Soo;Lee, In-Bok;Kwon, Kyeong-Seok;Ha, Tae-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.391-400
    • /
    • 2014
  • The number of large scale greenhouses has recently been increasing to cope with mass consumption of agricultural product. Korean government announced a new development plan for constructing greenhouse complex in reclaimed lands for the purpose of improvement in exports and activation of domestic market of agricultural product. Wind environment in the reclaimed land is totally different from that of inland area, and it can give a strong influence on ventilation performance of naturally ventilated greenhouse facilities. In this study, internal airflow analysis of naturally ventilated greenhouse built on a reclaimed land was conducted using wind tunnel and PIV for validation research. Later, the PIV measured results will be used to improve the accuracy of 3 dimensional CFD simulation in the future. Wind profile at a reclaimed land was produced using ESDU program and it was applied to the wind tunnel. The calculated error was only 5% and 0.96 of correlation coefficient, implying that the computed profiles were designed properly. From the measured results, when external wind speed changed from $1m{\cdot}s^{-1}$ to $1.5m{\cdot}s^{-1}$, air velocities inside the greenhouse which PIV measured were also increased proportionately in case of both side vent open and side-roof vent open. Considering reduced ratio of air velocity inside the greenhouse, it was measured a minimum of 40% in case of side vent and 30% in case of side-roof vent compared with external wind speed from each vent type. From the quantitative and qualitative PIV analysis, the PIV measured results indicated that there were well ventilated and stagnant areas in the greenhouse according to external wind condition as well as ventilation design.

Predicting Mortality in Patients with Tuberculous Destroyed Lung Receiving Mechanical Ventilation

  • Kim, Won-Young;Kim, Mi-Hyun;Jo, Eun-Jung;Eom, Jung Seop;Mok, Jeongha;Kim, Ki Uk;Park, Hye-Kyung;Lee, Min Ki;Lee, Kwangha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.3
    • /
    • pp.247-255
    • /
    • 2018
  • Background: Patients with acute respiratory failure secondary to tuberculous destroyed lung (TDL) have a poor prognosis. The aim of the present retrospective study was to develop a mortality prediction model for TDL patients who require mechanical ventilation. Methods: Data from consecutive TDL patients who had received mechanical ventilation at a single university-affiliated tertiary care hospital in Korea were reviewed. Binary logistic regression was used to identify factors predicting intensive care unit (ICU) mortality. A TDL on mechanical Ventilation (TDL-Vent) score was calculated by assigning points to variables according to ${\beta}$ coefficient values. Results: Data from 125 patients were reviewed. A total of 36 patients (29%) died during ICU admission. On the basis of multivariate analysis, the following factors were included in the TDL-Vent score: age ${\geq}65$ years, vasopressor use, and arterial partial pressure of oxygen/fraction of inspired oxygen ratio <180. In a second regression model, a modified score was then calculated by adding brain natriuretic peptide. For TDL-Vent scores 0 to 3, the 60-day mortality rates were 11%, 27%, 30%, and 77%, respectively (p<0.001). For modified TDL-Vent scores 0 to ${\geq}3$, the 60-day mortality rates were 0%, 21%, 33%, and 57%, respectively (p=0.001). For both the TDL-Vent score and the modified TDL-Vent score, the areas under the receiver operating characteristic curve were larger than that of other illness severity scores. Conclusion: The TDL-Vent model identifies TDL patients on mechanical ventilation with a high risk of mortality. Prospective validation studies in larger cohorts are now warranted.

Experimental Study on the Effect of the Area Ratio between Shaft and Tunnel and Heat Release Rate on the Plug-holing Phenomena in Shallow Underground Tunnels (저심도 도로터널에서 터널과 수직환기구의 단면적 비와 열방출률이 Plug-holing 현상에 미치는 영향에 관한 실험연구)

  • Hong, Kibea;Na, Junyoung;Ryou, Hong Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.619-625
    • /
    • 2019
  • It is difficult to design because of the plug-holing phenomenon in which the amount of smoke discharged from the vertical vent is smaller than the designed amount of smoke. In this study, the effect of cross-sectional area ratio of tunnel and natural ventilation and heat release rate of fire source on plug-holing phenomenon occurring in natural ventilation system was experimentally analyzed. In the experiment model reduced to 1/20 size, the aspect ratio of the tunnel and the vertical vent was fixed, and the influence on the plug-holing phenomenon was confirmed by varying the sectional area ratio of the tunnel and the vertical vent. Experimental results show that the plug-holing phenomenon is caused by the comparison of the smoke boundary layer temperature with the temperature in the vertical vents, and the flow and temperature distribution characteristics under the vertical vents are changed as the cross-sectional area ratio of the tunnel and vertical vents increases. The plug-holing phenomenon is affected by the cross-sectional area ratio between the tunnel and the vertical ventilation. The greater the cross-sectional area ratio, the greater the probability of plug-holing.

The different Polyphenism by the Level of Predation Risk and Habitat in Larval Salamander, Hynobius ieechii (한국산 도롱뇽의 포식압과 서식지에 따른 polyphenism)

  • Hwang, Ji-Hee;Chung, Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.744-750
    • /
    • 2010
  • This study examined the different polyphenism of larval salamander Hynobius ieechii according to two habitats, pond and stream. We collected salamander's eggs from three regions including Mountain Inwang, Surak and Gwangju. Eggs were treated by four different conditions according to predation level and habitat: high risk - which had a predation risk three times a day; low risk - which had no predation risk, pond and stream habitat. Predation risk was conducted by using chemical cue from Chinese minnows. The chemical cue treatment started from the day of collection and ended one week after the hatching. After the treatment phase, we measured the head width at the level of the eyes(HWE) and the largest head width(LHW) and snout-vent length of the each larva. We calculated the ratio of the head size by dividing HWE by LHW and made a comparison with each of the average ratio of head size according to the predation risk. The results showed that there was a significant difference in the ratio of the head size and snout-vent length according to the predation risk and habitat. From these results we found that predation risk and habitat condition can cause the different polyphenism to the larval salamander and these morphological changes could be affect their mortality.

Cooling Characteristics of Fruits and Vegetables for Pressure Cooling (차압통풍 예냉 청과물의 냉각특성)

  • 윤홍선;박경규
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.237-243
    • /
    • 1997
  • Numerous variables affect product cooling rate of pressure cooling system for fruits and vegetables. These include carton vent area, initial and desired final product temperature, flow rate and temperature of the cooling air, product size, shape and thermal properties and product configuration(whether in bulk or packed in shipping cartons). This study was carried out to determine the influence of each of these variables as they affect cooling time. The opening ratio and number of the vent hole were recomended as 4∼10% and 2∼4ea., respectively, for a minimum alt flow resistance and for a uniform air flow pattern. In the cooling experiment for tomatoes and mandarins, optimum air flow rate was 0.04 m3/min.kg in terms of energy saving. The cooling air temperature should be about 2$^{\circ}C$ less than the desired final product temperature for reducing cooling time.

  • PDF

Evaluation of the Excess Free Energy for Two-Center-Lennard-Jones Liquids Using the Vent Effective Acceptance Ratio

  • Hong, Seong Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.7
    • /
    • pp.697-700
    • /
    • 2000
  • A method of calculating the excess Helmholtz free energy from the average of the bent effective acceptance ratio for two-center-Lennard-Jones liquids has been presented. The bent effective acceptance ratio has been newly composed from the acceptan ce ratio for the potential energy difference between a configuration in the Metropolis Monte Carlo procedure and random virtual configuration generated by the separate parallel Monte Carlo procedure and the Boltzmann factor for half the potential energy difference. The excess Helmholtz free energy was calculated directly from the average of the bent effective acceptance ratio through a single Metropolis Monte Carlo run. Because the separate parallel Monte Carlo procedure was used, this method can be applied to molecular dynamics simulations. For two-center-Lennard-Jones liquids, the average of the bent effective acceptance ratio gave better results than use of the modified effective acceptance ratio in the previous work.

The Milling Characteristics of Cutting Type Rice Milling Machine Depending on the Number of a Cutting Roller's Air Vent and Blowing Velocity (절삭식 정미기의 절삭롤러 통풍구 수와 송풍속도에 따른 정백특성)

  • Cho, Byeong Hyo;Kang, Sin Hyeong;Won, Jin Ho;Lee, Hee Sook;Kang, Tae Hwan;Lee, Dong Il;Han, Chung Su
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.110-115
    • /
    • 2017
  • This study aimed to identify milling characteristics depending on the number of a cutting roller's air vent and blowing velocity to remove rice bran by the cutting type milling machine which can minimize the conventional milling process. The level of whiteness was found to be $38{\pm}0.5$ in all the conditions, showing consistent whiteness levels during milling. The rice temperatures turned out to be 15.4 and $14.6^{\circ}C$ which were rather low-level under the conditions of the cutting roller with 3 vents and blowing velocities of 35 and 40 m/s respectively. Cracked rice ratio was 2.13% under the conditions of the cutting roller with 3 vents and a blowing velocity of 35 m/s. Broken rice ratio showed the range of 0.762-0.869%, reflecting a low level. Turbidity after milling was decreased, as blowing velocity became faster. Energy consumption for milled rice production was decreased, as blowing velocity became faster. The optimum milling condition for cutting type milling machine depending on air vent number of cutting roller and blowing velocity was found to be 3 vents and 35 m/s.