• Title/Summary/Keyword: velocity profile

Search Result 1,020, Processing Time 0.034 seconds

Gravity and Angular Velocity Profile Effects on the Balancing Performance of an Automatic Ball Balancer (자동볼평형장치의 밸런싱 성능에 대한 중력과 속도파형의 영향)

  • 정진태;정두한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.418-423
    • /
    • 2003
  • The balancing performance of an automatic ball balancer (ABB) in the vertical or horizontal position is studied in this paper. Considering the effects of gravity and angular velocity profiles, a physical model for an ABB installed on the Jeffcott rotor is adopted. The non-linear equations of motion for the rotor with ABB are derived by using Lagrange's equation. Based on derived equations, dynamic responses for the rotor are computed by using the generalized-u method. From the computed responses, the effects of gravity and angular velocity profiles on the balancing performance are investigated. It is found that the rotor with ABB can be balanced regardless of the gravity effect. It is also shown that a smooth velocity profile yields relatively smaller vibration amplitude than a non-smooth velocity profile.

  • PDF

Strength prediction of steady laminar fluid with normal velocity distribution: A simplified truncation technique

  • Mohamed A. Khadimallah;Muzamal Hussain;Elimam Ali;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, the analytic solution has been found by using truncation approach. With the help of suitable substitution, different physical parameters are yielded in their non-dimensional form. The governing boundary layer partial differential equations are reduced to a set of ordinary ones by using appropriate similarity transformations. The velocity profile across the domain have also been taken into account. The effect normal velocity profiles buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. It is found that the normal velocity profiles rise with the buoyancy parameter and for the slip parameter. It is observed that the normal velocity profile decreases with the increase of shrinking parameter. The reverse behiour is found for the Casson fluid parameter. The results are numerically computed, analyzed and discussed. For the efficiency of present model, the results are compared with earlier investigations.

Comparison of the Vertical Velocity Distribution in the Natural Streamflow (자연하천의 연직방향 유속분포 비교(수공))

  • 박승기;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.346-351
    • /
    • 2000
  • The study was carried out to investigate the characteristics of vertical velocity distribution measured by current meter at Kangkyung station in Keum river during the period of 1995 to 1997. It suggests the quadratic parabola equation to estimate the vertical velocity profile only from the measurement data of surface velocity. The equation was found to be statistically very stable and showed high significance to express the surface velocity and bottom velocity. The vertical velocity profile was determined by the relationships to the surface velocity, and a coefficient of the quadratic parabola equation. The vertical velocity profile can be applied to calculating the mean velocity and discharge, and to and to analyse the dispersion of pollutant materials in the streamflow.

  • PDF

Numerical Study on the Effects of Velocity Profile Distortion and Swirl on Pressure Difference of Orifice Flowmeter Due to Pipe structure (배관구조에 따른 속도분포 변형과 선회가 오리피스 유량계의 압력차에 미치는 영향에 대한 수치적 연구)

  • Kim, Hong-Min;Kim, Kwang-Yong;Her, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1450-1456
    • /
    • 2003
  • Three-dimensional pipe flows with elbows, tees and headers in three different pipe systems are calculated to estimate the effect of asymmetry of axial velocity profile and swirl on measuring accuracy of an orifice flowmeter. It is evaluated how the pressure difference across the orifice is dependent on the upstream straight pipe length and how swirl intensity, swirl angle, and axial velocity distribution affect the measuring error of the orifice flowmeter. From the results, it is found that variation of the pressure difference across the orifice is negligible in case that maximum swirl angle is less than 2$^{\circ}$, and also that the pressure difference across the orifice is more sensitive to the asymmetry of axial velocity profile rather than the swirl intensity.

Modeling Transverse Velocity Profile in Natural Streams (자연하천의 유속 횡분포 모델링)

  • Seo, Il-Won;Baek, Gyeong-O
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.593-601
    • /
    • 1999
  • The knowledge about structure of the velocity in the stream IS essential in the investigation of stream meandering, erosion and sediment transport, and dispersion of pollutants in the stream. In this study, theoretical velocity profile model in which transverse profile of the longitudinal velocity in the stream can be predicted using stream hydraulic data was developed. The proposed model was tested with the measured velocity data of the Nakdong river. The result shows that the numerical model simulates properly the general shalxc of the measured velocity profiles. The simulated profiles agree well with measurements, especially in the aspects of skewness and flatness.atness.

  • PDF

A Study of High Precision Constant Velocity Control for Spiral Servo Writing in Hard Disk Drive (하드디스크 드라이브의 Spiral Servo Writing을 위한 초정밀 등속 제어 기법 연구)

  • Cho, K.N;Kang, H.J;Lee, C.W;Chung, C.J;Sim, J.S
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.99-107
    • /
    • 2005
  • According to recent trend, hard disk drive(HDD) has been smaller and less weight. Therefore, it needs new method of writing position information. In this thesis, a new controller that is suitable for SSW is proposed. The controller accepted SSW technology that is used to write position information in current HDD industry. The important condition to perform SSW is to reach constant velocity decided from the head velocity profile as fast as possible. The constant velocity decides the positional accuracy of spiral pattern and setup time decides the capacity of HDD. The head velocity profile as a reference signal must be designed not to cause resonance mode. The proposed controller was designed with consideration of these 3 elements, and it properly works for SSW. The velocity profile designed with SMART control not only minimizes the jerk, but also does not cause the resonance mode of a plant. After designing a conventional PID controller, it compared with electrical spring technique and ZPET technique.

  • PDF

A summertime near-ground velocity profile of the Bora wind

  • Lepri, Petra;Kozmar, Hrvoje;Vecenaj, Zeljko;Grisogono, Branko
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.505-522
    • /
    • 2014
  • While effects of the atmospheric boundary layer flow on engineering infrastructure are more or less known, some local transient winds create difficulties for structures, traffic and human activities. Hence, further research is required to fully elucidate flow characteristics of some of those very unique local winds. In this study, important characteristics of observed vertical velocity profiles along the main wind direction for the gusty Bora wind blowing along the eastern Adriatic coast are presented. Commonly used empirical power-law and the logarithmic-law profiles are compared against unique 3-level high-frequency Bora measurements. The experimental data agree well with the power-law and logarithmic-law approximations. An interesting feature observed is a decrease in the power-law exponent and aerodynamic surface roughness length, and an increase in friction velocity with increasing Bora wind velocity. This indicates an urban-like velocity profile for smaller wind velocities and rural-like velocity profile for larger wind velocities, which is due to a stronger increase in absolute velocity at each of the heights observed as compared to the respective velocity gradient (difference in average velocity among two different heights). The trends observed are similar during both the day and night. The thermal stratification is near neutral due to a strong mechanical mixing. The differences in aerodynamic surface roughness length are negligible for different time averaging periods when using the median. For the friction velocity, the arithmetic mean proved to be independent of the time record length, while for the power-law exponent both the arithmetic mean and the median are not influenced by the time averaging period. Another issue is a large difference in aerodynamic surface roughness length when calculating using the arithmetic mean and the median. This indicates that the more robust median is a more suitable parameter to determine the aerodynamic surface roughness length than the arithmetic mean value. Variations in velocity profiles at the same site during different wind periods are interesting because, in the engineering community, it has been commonly accepted that the aerodynamic characteristics at a particular site remain the same during various wind regimes.

Effects of Gravity and Angular Velocity Profiles on the Dynamic Behavior of an Automatic Ball Balancer (자동볼평형장치의 동적거동에 미치는 중력과 속도파형의 영향)

  • Jung, Du-Han;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.511-516
    • /
    • 2004
  • The dynamic behavior of an automatic ball balancer (ABB) is studied considering the effects of gravity and angular velocity profiles. In this study, a physical model for an ABB installed on the Jeffcott rotor is adopted in order to investigate the effects of gravity and angular acceleration. The equations of motion for the rotor with ABB are derived by using Lagrange's equation. Based on derived equations, dynamic responses for the rotor are computed by using the generalized-o method. From the computed responses, the effects of gravity and angular velocity profiles on the dynamic behavior are investigated. It is found that the balancing of the rotor with ABB can be achieved regardless of gravity. It Is also shown that a smooth velocity profile yields relatively smaller vibration amplitude than a non-smooth velocity profile.

GLOBAL Hɪ PROPERTIES OF GALAXIES VIA SUPER-PROFILE ANALYSIS

  • Kim, Minsu;Oh, Se-Heon
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.5
    • /
    • pp.149-172
    • /
    • 2022
  • We present a new method which constructs an Hɪ super-profile of a galaxy which is based on profile decomposition analysis. The decomposed velocity profiles of an Hɪ data cube with an optimal number of Gaussian components are co-added after being aligned in velocity with respect to their centroid velocities. This is compared to the previous approach where no prior profile decomposition is made for the velocity profiles being stacked. The S/N improved super-profile is useful for deriving the galaxy's global Hɪ properties like velocity dispersion and mass from observations which do not provide sufficient surface brightness sensitivity for the galaxy. As a practical test, we apply our new method to 64 high-resolution Hɪ data cubes of nearby galaxies in the local Universe which are taken from THINGS and LITTLE THINGS. In addition, we also construct two additional Hɪ super-profiles of the sample galaxies using symmetric and all velocity profiles of the cubes whose centroid velocities are determined from Hermite h3 polynomial fitting, respectively. We find that the Hɪ super-profiles constructed using the new method have narrower cores and broader wings in shape than the other two super-profiles. This is mainly due to the effect of either asymmetric velocity profiles' central velocity bias or the removal of asymmetric velocity profiles in the previous methods on the resulting Hɪ super-profiles. We discuss how the shapes (𝜎n/𝜎b, An/Ab, and An/Atot) of the new Hɪ super-profiles which are measured from a double Gaussian fit are correlated with star formation rates of the sample galaxies and are compared with those of the other two super-profiles.

COMPARISON OF SOBOLEV APPROXIMATION WITH THE EXACT ALI IN P CYGNI TYPE PROFILE

  • CHOE SEUNG-URN;KO MI-JUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.30 no.1
    • /
    • pp.13-25
    • /
    • 1997
  • Sobolev approximation can be adopted to a macroscopic supersonic motion comparatively larger than a random (thermal) one. It has recently been applied not only to the winds of hot early type stars, but also to envelopes of late type giants and/or supergiants. However, since the ratio of wind velocity to stochastic one is comparatively small in the winds of these stars, the condition for applying the Sobolev approximation is not fulfilled any more. Therefore the validity of the Sobolev approximation must be checked. We have calculated exact P Cygni profiles with various velocity ratios, $V_\infty/V_{sto}$, using the accelerated lambda iteration method, comparing with those obtained by the Sobolev approximation. While the velocity ratio decrease, serious deviations have been occured over the whole line profile. When the gradual increase in the velocity structure happens near the surface of star, the amount of deviations become more serious even at the high velocity ratios. The investigations have been applied to observed UV line profile of CIV in the Copernicus spectrums $of\;\zeta\;Puppis\;and\;NV\;of\;\tau\;Sco$. In case of $\tau$ Sco which has an expanding envelope with the gradual velocity increase in the inner region, The Sobolev approximation has given the serious deviations in the line profiles.

  • PDF