• Title/Summary/Keyword: velocity differential

Search Result 424, Processing Time 0.027 seconds

A Diagnostic Model for Dye Plume Meandering in Oceanic Waters (해양에서의 염료 플럼의 사행에 대한 모델)

  • Ro, Young-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.4
    • /
    • pp.200-207
    • /
    • 1990
  • This study is concerned with the meandering of plume axis in oceanic waters. The process is understood that it is a consequence of the differential contribution by the multiple harmonics of local velocity field to variances of center of mass of crossplume as a function of distance from the source point. A diagnostic model is proposed which is aimed to delineate the eddying motions and furthermore the amplified meandering of plumeaxis. From the data base of dye plumes, wave lengths of meandering eddies are estimated to range between 5.5 to 60.3 (m) in coastal surface waters. A numerical simulation is conducted to predict the concentration field of meandering plume.

  • PDF

A study on an oblique impinging jet (경사충돌분류에 관한 연구)

  • 조용철;김광용;박상규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.716-724
    • /
    • 1990
  • Oblique impinging plane jets were investigated experimentally and numerically at Reynolds number 21000. The inclination angle was varied from 90.deg.(normal to the impinging plate) to 60.deg.. The distance H between the nozzle exit and the stagnation point on the impinging plate was fixed at H/D=8. The working fluid was air. The mean velocity components and turbulent quantities were measured by a hot-wire anemometer. And the static pressure distributions on the impinging plate were measured by a Pitot tube. In numerical computation, the governing partial differential equations of elliptic type were solved with conventional k-.epsilon. turbulence model. The measurements show that, after impingement, the jet half width alone the wall increases in both directions, and that similarity for each turbulent quantity such as Reynolds shear stress or turbulent kinetic energy is revealed in the wall jet region. The computed results show some deviation from experimental data in the impingement region, where streamline curvature is significant. However, the computed results agree qualitatively well with measurements.

Measurements of Temperature Characteristics of The Lung Inflation and Deflation Reflexes Using Automated Vagal Cooling System in Anesthetized Dogs (자동신경 냉각장치를 이용한 흡식반사와 호식반사의 온도특성 측정)

  • 송영진;차은종
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.177-184
    • /
    • 1991
  • Characteristics of the lung inflation and deflation reflexes were measured at various temperatrues on the cervical vagi in five anesthetized mongrel dogs. Nerve temperature was maintained at the body temperature, and $2-14^{\circ}C$ with $2^{\circ}C$ apart using a specially designed automated vagal cooling apparatus with an accuracy to within ${\pm}0.1^{\circ}C$ at each temperature. The inflation reflex was blocked abruptly at $8-10^{\circ}C$. The deflation reflex started weakened at $14^{\circ}C$, thereafter showed a gradual blockade with the temperature decreased with a substantial variance among the animals. It was approximately 75% blocked at $2-6^{\circ}C$. These differences in temperature characteristics made it hard to differentiate the deflation reflex from the inflation reflex. In one animal, however, the inflation reflex was completely blocked with the deflation reflex almost alive at $6-8^{\circ}C$. This suegests that differential cold blockade of the vagal reflexes can be done only in selected subjects. Fur- thermore, the fact that these two reflexes were blocked at different temperatures may be due to the differences in the nerve fiber size and the changes in the conduction velocity with temperature.

  • PDF

Non-linear Vibration Analysis for the In-plane Motion of a Semi-circular Pipe Conveying Fluid (유체를 수송하는 반원형 곡선관의 면내운동에 대한 비선형 진동 해석)

  • 정두한;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.677-682
    • /
    • 2003
  • The non-linear dynamic characteristics of a semi-circular pipe conveying fluid are investigated when the pipe is clamped at both ends. To consider the geometric non-linearity for the radial and circumferential displacements, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived form the Galerkin method. The natural frequencies varying with the flow velocity are computed fen the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized- method. From these results, we should to describe the non-linear behavior to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

  • PDF

GPS-Based Orbit Determination for KOMPSAT-5 Satellite

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Young-Rok;Roh, Kyoung-Min;Jung, Ok-Chul;Kim, Hae-Dong
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.487-496
    • /
    • 2011
  • Korea Multi-Purpose Satellite-5 (KOMPSAT-5) is the first satellite in Korea that provides 1 m resolution synthetic aperture radar (SAR) images. Precise orbit determination (POD) using a dual-frequency IGOR receiver data is performed to conduct high-resolution SAR images. We suggest orbit determination strategies based on a differential GPS technique. Double-differenced phase observations are sampled every 30 seconds. A dynamic model approach using an estimation of general empirical acceleration every 6 minutes through a batch least-squares estimator is applied. The orbit accuracy is validated using real data from GRACE and KOMPSAT-2 as well as simulated KOMPSAT-5 data. The POD results using GRACE satellite are adjusted through satellite laser ranging data and compared with publicly available reference orbit data. Operational orbit determination satisfies 5 m root sum square (RSS) in one sigma, and POD meets the orbit accuracy requirements of less than 20 cm and 0.003 cm/s RSS in position and velocity, respectively.

Wave dispersion properties in imperfect sigmoid plates using various HSDTs

  • Batou, Belaid;Nebab, Mokhtar;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdeldjebbar;Bouremana, Mohammed
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.699-716
    • /
    • 2019
  • In this paper, wave propagations in sigmoid functionally graded (S-FG) plates are studied using new Higher Shear Deformation Theory (HSDT) based on two-dimensional (2D) elasticity theory. The current higher order theory has only four unknowns, which mean that few numbers of unknowns, compared with first shear deformations and others higher shear deformations theories and without needing shear corrector. The material properties of sigmoid functionally graded are assumed to vary through thickness according sigmoid model. The S-FG plates are supposed to be imperfect, which means that they have a porous distribution (even and uneven) through the thickness of these plates. The governing equations of S-FG plates are derived employed Hamilton's principle. Using technique of Navier, differential equations of S-FG in terms displacements are solved. Extensive results are presented to check the efficient of present methods to predict wave dispersion and velocity wave in S-FG plates.

Analysis of Friction-Induced Vibrations in a Ball Screw Driven Slide on Skewed Guideway (경사안내면 상에서 이송되는 볼나사-슬라이드 이송계의 마찰기인 진동해석)

  • Choi, Young Hyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.88-98
    • /
    • 2014
  • A moving mass on a skewed linear guideway model to analyze the friction-induced stick-slip behavior of ball-screw-driven slides is proposed. To describe the friction force, a friction coefficient function is modelled as a third-order polynomial of the relative velocity between the slide mass and a guideway. A nonlinear differential equation of motion is derived and an approximate solution is obtained using a perturbation method for the amplitudes and base frequencies of both pure-slip and stick-slip oscillations. The results are presented with time responses, phase plots, and amplitude plots, which are compared adequately with those obtained by Runge Kutta 4th-order numerical integration, as long as the difference between the static and kinematic friction coefficients is small. However, errors in the results by the approximate solution increase and are not negligible if the difference between the friction coefficients exceeds approximately 40% of the static friction coefficient.

Rate Expression of Fischer-Tropsch Synthesis Over Co-Mn Nanocatalyst by Response Surface Methodology (RSM)

  • Mansouri, Mohsen;Atashi, Hossein;Khalilipour, Mir Mohammad;Setareshenas, Naimeh;Shahraki, Farhad
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.769-777
    • /
    • 2013
  • The effect of operating conditions (temperature and the partial pressures of H2 and CO) on the reaction rate of Fischer-Tropsch synthesis (FTS) were investigated by carrying out experiments according to a Box-Behnken design (BBD), and were mathematically modeled by using response surface methodology (RSM). The catalyst used was a nano-structured cobalt/manganese oxide catalyst, which was prepared by thermal decomposition. The rate of synthesis was measured in a fixed-bed micro reactor with $H_2/CO$ molar feed ratio of 0.32-3.11 and reactor pressure in the range of 3-9.33 bar at space velocity of $3600h^{-1}$ and a temperature range of 463.15-503.15 K, under differential conditions (CO conversion below 2%). The results indicated that in the present experimental setup, the temperature and the partial pressure of CO were the most significant variables affecting reaction rate. Based on statistical analysis the quadratic model of reaction rate of FTS was highly significant as p-value 0.0002.

Bi-stability in a vertically excited rectangular tank with finite liquid depth

  • Spandonidis, Christos C.;Spyrou, Kostas J.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.229-238
    • /
    • 2012
  • We discuss the bi - stability that is possibly exhibited by a liquid free surface in a parametrically - driven two-dimensional (2D) rectangular tank with finite liquid depth. Following the method of adaptive mode ordering, assuming two dominant modes and retaining polynomial nonlinearities up to third-order, a nonlinear finite-dimensional nonlinear modal system approximation is obtained. A "continuation method" of nonlinear dynamics is then used in order to elicit efficiently the instability boundary in parameters' space and to predict how steady surface elevation changes as the frequency and/or the amplitude of excitation are varied. Results are compared against those of the linear version of the system (that is a Mathieu-type model) and furthermore, against an intermediate model also derived with formal mode ordering, that is based on a second - order ordinary differential equation having nonlinearities due to products of elevation with elevation velocity or acceleration. The investigation verifies that, in parameters space, there must be a region, inside the quiescent region, where liquid surface instability is exhibited. There, behaviour depends on initial conditions and a wave form would be realised only if the free surface was substantially disturbed initially.

The Effects of Two - Phase Swirling Flow on Void Distribution and Pressure Drop in a Vertical Tube (수직관에서 2상선회유동이 보이드분포와 압력강하에 미치는 영향)

  • Kim, I.S.;Son, B.J.;Shin, H.D.;Kwack, K.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.190-201
    • /
    • 1989
  • This experimental investigation has been conducted to determine the effects of swirling angle and flow patterns on distributions of void fraction, bubble velocity and two-phase pressure drop in a vertical straight tube. Swirling angles of $0^{\circ}$ (non swirling), $30^{\circ}$, and $45^{\circ}$ were tested with air-water two components over a range of superficial air velocities. A transparent lucite tube of 38mm in internal diameter was used for the test section. The void fraction and bubble velocities were measured by means of a optical fiber probe at the upper part of the swirler in the test section. Pressure drops which seem to be closely related with flow patterns and swirling angle were measured by a differential pressure transducer. It is shown that the probability density functions of pressure drop demonstrate peculiar features for both swirling angles and flow patterns, whereas the distributions of void fraction and bubble velocities are parabolic and flat shape in the vicinity of tube center, respectively except bubbly flow in any swirling angle cases, and the void fraction increases with increasing swirling angle around the center of tube.

  • PDF