• 제목/요약/키워드: velocity control algorithm

검색결과 612건 처리시간 0.03초

전기-기계식 능동 현가장치 제어를 위한 NCF 알고리즘 (The NCF Algorithm for the Control of an Electro-mechanical Active Suspension System)

  • 한인식;이윤복;최교준;김재용;장명언
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.1-9
    • /
    • 2012
  • The NCF control algorithm for an active suspension system was proposed and investigated. The NCF algorithm using spring dynamic variation force and suspension relative velocity was applied to the 1/4 vehicle model and numerical analysis was performed. Vehicle's performances such as vehicle displacement, vehicle acceleration, suspension deflection, tire deflection and absorbed power were calculated and compared with those of the passive, semi-active and LQR active suspension system that use full state feedback. Numerical results show that the proposed NCF active suspension system has superior performance compared with the passive and semi-active suspension system and has very similar performance compared with the LQR active suspension system. So the proposed NCF algorithm is considered as a highly practical algorithm because it requires only one displacement sensor in a 1/4 vehicle model.

버스용 병렬형 하이브리드 동력전달계의 개발 (VI) 제 6 편 : 하이브리드 동력전달계용 자동화 변속기의 변속 질 향상을 위한 변속 제어 알고리듬의 개발 (A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 6 : A Development of Shift Control Algorithm for Improving the Shift Characteristics of the Hybrid Drivetrain with AMT)

  • 조성태;전순일;조한상;박영일;이장무
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.105-114
    • /
    • 2001
  • In this study, a shift control algorithm far improving the shift quality of a parallel hybrid drivetrain with an automated manual transmission (AM) is proposed. The general AMT requires the sophisticated control of clutch in the clutch engagement to improve its shift characteristics, and that is generally known to be difficult. But in this hybrid drivetrain, we can control the speeds of clutch plates by engine and motor control, and it provides the easier clutch control in shift process than general AMT. Additionally, it permits the much-reduced shift shock. The motor control during the shift period is also to achieve reduced velocity drop of the vehicle in comparison with that of a general AMT. Furthermore various dynamometer-based experiments are carried out to prove the validity of the proposed shift control algorithm.

  • PDF

적응형 슬라이딩 모드 제어를 이용한 위상 궤적 해석 기반 굴삭기의 안전제어 알고리즘 개발 (Phase Portrait Analysis-Based Safety Control for Excavator Using Adaptive Sliding Mode Control Algorithm)

  • 오광석;서자호;이근호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권3호
    • /
    • pp.8-13
    • /
    • 2018
  • This paper presents a phase portrait analysis-based safety control algorithm for excavators, using adaptive sliding mode control. Since working postures and material types cause the excavator's rotational inertia to vary, the rotational inertia was estimated, and this estimation was used to design an adaptive sliding mode controller for collision avoidance of the excavator. In order to estimate the rotational inertia, the recursive least-squares estimation with multiple forgetting was applied with the information of the swing velocity of the excavator. For realistic evaluation, an actual working scenario-based performance evaluation was conducted. Based on the estimated rotational inertia and an analysis of estimation errors, sliding mode control inputs were computed. The actual working scenario-based performance evaluation of the designed safety algorithm was conducted, and the results showed that the developed safety control algorithm can efficiently avoid a collision with an object in consideration of rotational inertia variations.

실외 자율주행 로봇을 위한 다수의 동적 장애물 탐지 및 선속도 기반 장애물 회피기법 개발 (Multiple Target Tracking and Forward Velocity Control for Collision Avoidance of Autonomous Mobile Robot)

  • 김선도;노치원;강연식;강성철;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.635-641
    • /
    • 2008
  • In this paper, we used a laser range finder (LRF) to detect both the static and dynamic obstacles for the safe navigation of a mobile robot. LRF sensor measurements containing the information of obstacle's geometry are first processed to extract the characteristic points of the obstacle in the sensor field of view. Then the dynamic states of the characteristic points are approximated using kinematic model, which are tracked by associating the measurements with Probability Data Association Filter. Finally, the collision avoidance algorithm is developed by using fuzzy decision making algorithm depending on the states of the obstacles tracked by the proposed obstacle tracking algorithm. The performance of the proposed algorithm is evaluated through experiments with the experimental mobile robot.

미세스텝 제어 방식에 의한 PM 스텝 모터의 위치 및 속도 제어에 관한 연구 (A Study on the Position and Speed Control of PM Step Motor Using Micro-Step Control Drive)

  • 김동현;한권상
    • 대한전자공학회논문지
    • /
    • 제27권6호
    • /
    • pp.871-878
    • /
    • 1990
  • The control method which electrically subdivides 1 step(1.8\ulcornerstep) of a PM step motor into 64 micro-step (0.028\ulcornerstep) is realized using micro-step algorithm on the basis of the look up table method and the position and velocity control using Z-80 microprocessor is also realized. With micro-stepping. The resolution of the system is improved, also by micro-step control of driving-current of the step motro, which is followed by the increase of micro-step subdivision-coefficient, the precise position and velocity control of step-motor can be realized and the stabilization of the system is improved.

  • PDF

볼엔드밀 절삭공정에서 위치 및 절삭력 동시제어 (simultaneous Control of Position and Cutting Force Based o Multi-input Multi-output Model in Ball End Milling Process)

  • 이건복
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.121-126
    • /
    • 2000
  • This research proposes a new advanced control method and demonstrates its realization in part. By incorporating shape machining and cutting force control at a time, this integrated scheme makes it possible to machine a desired shape and avoid the trouble of programming feedrate and spindle speed before machining and also reduce the shape error. The main idea proposed to achieve those goals consists in giving commanded path and desired cutting force at the same time. which makes it possible for position and force controller to distribute the corresponding velocity of individual axes and main spindle by an appropriate interpolation. That indicates we can replace the built-in interpolator of commercial machine tools by the developed algorithm.

  • PDF

자기동조기법을 이용한 반능동 현가장치의 수정된 스카이훅제어 구현 및 실험 (Self-Tuning Modified Skyhook Control for Semi -Active Suspension Systems)

  • 정재룡;손현철;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.114-114
    • /
    • 2000
  • In this paper a self-tuning modified skyhook control for the semi-active suspension systems is investigated. The damping force generation mechanism is modeled We consider a 2 DOF time-varying quarter car model that permits parameter variations of the sprung mass and suspension spring coefficient. The modified skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters, according to parameter variations. The skyhook gains are designed in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype will be discussed

  • PDF

RLSN 예측기 기반 섭동 추정기를 갖는 슬라이딩 모드 제어 (Sliding Mode Control with RLSN Predictor-Based Perturbation Estimation)

  • 남윤주;이육형;박명관
    • 대한기계학회논문집A
    • /
    • 제30권8호
    • /
    • pp.880-888
    • /
    • 2006
  • This paper presents the sliding mode control with the perturbation estimator for a nonlinear control system in the presence of perturbations including external disturbances, unpredictable parameter variations, ana unstructured dynamics. The proposed perturbation estimator is based on the Recursive Linear Smoothed Newton predictive algorithm so that it is effective to attenuate an undesired noise in high frequency band and to predict the present perturbation signal from the previous ones. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE) introduced by Elmali and Olgac, the control algorithm proposed in this study can offer better tracking control performances and more feasible estimation characteristics. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a simple two-link robot manipulator subject to velocity feedback signals including white noises.

A Posture Control for Two Wheeled Mobile Robots

  • Shim, Hyun-Sik;Sung, Yoon-Gyeoung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.201-206
    • /
    • 2000
  • In this paper, a posture control for nonholonomic mobile robots is proposed with an empirical basis. In order to obtain fast and consecutive motions in realistic applications, the motion requirements of a mobile robot are defined. Under the assumption of a velocity controller designed with the selection guidance of control parameters, the algorithm of posture control is presented and experimentally demonstrated for practicality and effectiveness.

  • PDF

기어강성을 갖는 2-자유도 포신 안정화시스템에서 FXLMS 알고리즘을 이용한 외란 보상 제어기 설계 (Disturbance Compensation Control Design far 2-DOF Gun Stabilization System with Gear Stiffness by Using FXLMS Algorithm)

  • 임재근;강민식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.488-493
    • /
    • 2005
  • In gun stabilization systems, the torque comes from the unbalance mass of gun and the base acceleration is an important source of disturbance which degrades stabilization performance. Fatigue of gear train is another important factor affecting structural safety problems. In this paper, a feedback control gain is designed by optimal control weighting to difference between motor and gun velocity, and a feedforward controller using FXLMS algorithm is adopted to investigate those problems. Experimental results show that the feedforward compensator based on FXLMS can reduce the disturbance effects. The directional convergence property according to initial conditions of the FXLMS is also shown through experiments.

  • PDF