• Title/Summary/Keyword: velocity change

Search Result 1,993, Processing Time 0.032 seconds

New Sludge Settling Characteristic Index Considering Sludge Settling Velocity (슬러지침전속도를 고려한 새로운 슬러지침전특성지표의 설정에 관한 연구)

  • Park, Suk Gyun;Kang, Seon-Hong;Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.451-460
    • /
    • 2006
  • While sludge settles down in a batch column, sludge concentration becomes high. Sludge concentration change is one of the most critical causes of the sludge settling velocity variation. Therefore, sludge concentration change causes sludge index to change. SVI is more sensitive than other sludge indexes to the change of sludge concentration. And if sludge-water interface has reached final height within 30minutes, SVI is not suitable for prediction of sludge settling characteristic, Therefore, SVIs of each sludge are, in some cases, different although each sludge has the same settling velocity. But SVI has been widely used to interpret sludge settling characteristic by a simple testing method. This work has two purposes. The first purpose is to predict sludge settling velocity by using sludge-water interface settling velocity. And the second purpose is to develop new sludge settling characteristic index to exactly interpret sludge settling characteristic by overcoming the limit of SVI.

The Effect of Sludge Settling Characteristics on Sludge-Water Interface Height Change Model (슬러지계면층 높이변화모델에서 슬러지 침전특성에 대한 영향)

  • Park, Suk Gyun;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.147-155
    • /
    • 2006
  • For the further study of the solids flux theory, several researchers have proposed models to predict sludge settling velocity for each different concentration by using sludge indexes, SVI, SSVI and $SSVI_{3.5}$. It is difficult to apply the above models to predict sludge-water interface height in a batch column because sludge settling velocity changes while sludge settle down. While sludge settle down in a batch column, sludge concentration becomes high. The sludge concentration change is one of the most critical causes of the change of sludge settling velocity. Also, sludge concentration change causes of sludge index to change. SVI is more sensitive than SSVI or $SSVI_{3.5}$ to the change of sludge concentration. Each sludge has physical characteristics of its own which makes the settling velocity for each sludge different. The purpose of this study is to establish the correction factors that are able to compensate the errors derived from each different sludge settling characteristic by using sludge indexes, therefore the correction factors are applicable to the model for the change of sludge-water interface height.

The Effect of Tempering Temperature on Ultrasonic Velocity Property at the Quenched SCM 440 Steel (퀜칭한 SCM 440 강에서 초음파 전파특성에 미치는 템퍼링온도의 영향)

  • Lee, K.W.;Kim, M.I.;Park, U.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.54-62
    • /
    • 1991
  • The effect of tempering temperature on the ultrasonic propagation velocity at SCM 440 steel quenched from $870^{\circ}C$ and $1000^{\circ}C$ has been studied by metallurgical and crystallographical observation. The measurements of ultrasonic velocity were made on the specimen by appling an immersion ultrasonic pulse-echo technique with a constant frequency of 10 MHz. The quenched microstructure of this steel was a lath martensite. As the tempering temperature was increased, the martensite was transformed into the tempered martensite composed of cementite and carbide. The ultrasonic velocity increased with increasing the tempering temperature. It was thought that these were resulted from the microstructural transformation. The change of ultrasonic propagation velocity with quenching and tempering heat treatment was resulted from microstrain due to the change of internal stress. Considering these results concerning to the change of ultrasonic propagation velocity. the phenomena of microstructural transformation were estimated. Consequently, it was thought that the degree of quenching and tempered heat treatment of steel could be nondestructively evaluated with the change of ultrasonic propagation velocity.

  • PDF

Physical Properties of Rocks according to Heating Treatment (열충격 시험에 의한 암석의 물성변화)

  • Kim, Jae-Hwan;Lee, Myeong-Seong;Lee, Jae-Man;Lee, Mi-Hye;Park, Sung-Mi
    • 보존과학연구
    • /
    • s.31
    • /
    • pp.31-42
    • /
    • 2010
  • This study were performed thermal shock test for four kind of different rocks (Iksan granite, Namsan granite, Jeongseon marble, Yeongyang sandstone), and according to heating temperature($400^{\circ}C$, $600^{\circ}C$) on samples were investigated physical properties such as specify gravity, porosity, p-wave velocity. As a result, the tendency was appeared that porosity increased, and specific gravity and p-wave velocity decreased at a more higher temperature. But, the situation of change appeared characteristic according to temperature and rock types. In the case of Yeongyang sandstone, it appeared in especially porosity increasing at $400^{\circ}C$. The specific gravity was little change in the all the rock at $400^{\circ}C$ but the decreased at $600^{\circ}C$. Therefore the specific gravity in the temperature range is due to the relatively small impact on the change is expected. Porosity of the granite at $400^{\circ}C$ changes little. but marble in the rate of change is large. Conversely, the sandstone porosity decreased. At $600^{\circ}C$ increased porosity in all of rocks. particularly sandstone the smallest increase in porosity. Experiments showed that p-wave velocity measured through dry rocks was sensitive to quantify the thermal damage. The p-wave velocity of all rocks decreased with increasing temperature. In the relation between porosity and p-wave velocity, p-wave velocity decreased with increasing porosity. On the other hand, in case of Yeongyang sandstone p-wave velocity decreased with decreasing porosity. thus, development of microcracks more affects p-wave velocity than porosity. In this study, damage intensity was well explained with porosity and p-wave velocity values depending on temperature increase.

  • PDF

The Relationship between Kinematics of the Limb motions and Changes in the Velocity of the Center of Gravity of the Whole Body during Support Phase in the Triple Jump (세단뛰기 지지국면 시 사지의 운동학적 변인과 전신 무게중심의 속도 변화와의 관계)

  • Ryu, Jae-Kyun;Jung, Chul-Jung;Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.27-46
    • /
    • 2003
  • The purposes of this study were to determine the functions of actions of the limbs during each of the three support phases of the triple jump and their relationships with the performance of the triple jump. Four elite male triple jumpers were participated as subjects. The statistical analyses used were the Pearson product moment correlation coefficient for establishing relationships and simple regression analyses to determine and compare the relationships between the change of the horizontal velocity and the change of the vertical velocity during different support phases. A level of significance at p<.05 was set. The actions of the arms were responsible for about 25%, 25%, and 30% of the decrease in the horizontal velocity of the whole body center of gravity during the support phases of the hop, step, and jump, respectively. The change in the velocities of the whole body center of gravity due to the actions of the free limbs were significantly related with the whole body center of gravity during each support phase. The action of the support leg was associated with the decrease in the horizontal velocity and the increase in the vertical velocity of the whole body center of gravity during each support phase.

Factors Influencing on movement of crashed Vehicle by using EDSMAC (EDSMAC을 이용한 충돌 후 차량운동에 영향을 미치는 인자)

  • Jung, H.K.;Kang, D.M.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.42-48
    • /
    • 2002
  • Velocity change of crashed vehicle has been applied to assess the safety of passenger and degree of impact severity widely. In this study, 1 D crash analysis and 2 D crash analysis were performed for velocity change of crashed vehicle with HVE 2D, and factors used for these analysis are weight, C.G, roll resistance, stiffness and brake force which influence on velocity change of crashed vehicle. According to results, the velocity change of crashed vehicle was influenced by weight, center of gravity stiffness and brake force but not roll resistance.

  • PDF

Applicability of Coda Wave Interferometry Technique for Measurement of Acoustoelastic Effect of Concrete

  • Shin, Sung Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.428-434
    • /
    • 2014
  • In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

Optimization fluidization characteristics conditions of nickel oxide for hydrogen reduction by fluidized bed reactor

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Kim, Yong-Ha;Lee, Kwan-Young;Park, Young-Ok
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2321-2326
    • /
    • 2018
  • We evaluated the optimal conditions for fluidization of nickel oxide (NiO) and its reduction into high-purity Ni during hydrogen reduction in a laboratory-scale fluidized bed reactor. A comparative study was performed through structural shape analysis using scanning electron microscopy (SEM); variance in pressure drop, minimum fluidization velocity, terminal velocity, reduction rate, and mass loss were assessed at temperatures ranging from 400 to $600^{\circ}C$ and at 20, 40, and 60 min in reaction time. We estimated the sample weight with most active fluidization to be 200 g based on the bed diameter of the fluidized bed reactor and height of the stocked material. The optimal conditions for NiO hydrogen reduction were found to be height of sample H to the internal fluidized bed reactor diameter D was H/D=1, reaction temperature of $550^{\circ}C$, reaction time of 60 min, superficial gas velocity of 0.011 m/s, and pressure drop of 77 Pa during fluidization. We determined the best operating conditions for the NiO hydrogen reduction process based on these findings.

Performance characteristics of simultaneous removal equipment for paint particulate matter and VOCs generated from a spraying paint booth (입자상물질과 VOCs 동시제거 실증장치에서 자동차 페인트 부스 발생 paint aerosol과 VOCs의 동시제거 성능 특성)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Park, Young-Ok
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.161-168
    • /
    • 2016
  • The purpose of this study is to determine the performance characteristics of the paint particulate and volatile organic compounds(VOCs) simultaneous removal from the spraying paint booth in the laboratory and real site by sticky paint particulate and VOCs simultaneous removal demonstration unit. The sticky paint particulate and VOCs simultaneous removal unit is composed of the horizontal type pleated filter modules and the zig-zag type granular activated carbon packing modules. The test conditions at the laboratory are $50.15g/m^3$ of average paint aerosol concentration and 300 ppm of VOCs concentration which were same as the working conditions of spraying paint booth in the real site. But, the demonstration conditions at the real site are varied according to the working condition of spraying paint booth for the kind of passenger car bodies. The test results at the laboratory obtained that 99% of total particulate collection efficiency at 0.62 m/min of filtration velocity and 84% at 1.77 m/min of filtration velocity. The VOCs removal efficiencies are 97% at $3500hr^{-1}$ of gas hour space velocity and 59% at $10,000hr^{-1}$ of gas hour space velocity. In the real site test, the average removal efficiency of PM10 was measured to be 99.65%, the average removal efficiency of PM2.5 was 99.38%, the average removal efficiency of PM1 was 98.52%, and the average removal efficiency of VOCs was 89%.

Reference Values of Transcranial Doppler Ultrasonography Measurement and Relation with Change Factor (Transcranial Doppler Ultrasonography(TCD)의 참고치와 변화 요인들과의 연관성)

  • Jung, Jong-An;Cho, Gook-Ryung;Kim, Nam-Uk;Kang, Chul-Sik;Jeon, Sang-Yun;Hong, Seok
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.709-716
    • /
    • 2007
  • Objective : We present reference values of flow velocities of intracranial and extracranial cerebral arteries and relation with change factor. Method : We checked transcranial Doppler ultrasonography on mean velocity, systolic velocity, pulsatility index, and resistance index of 252 patients. We also compared differences of change factor. Result : The result showed a difference by sex and age and relevance between vessels besides mean velocity of vessels related with past history and social history. Conclusion : According to the above results, females showed higher velocity of all vessels. With advancing age, subjects showed reduction in velocity and increase in pulsatility index and resistance index. Anterior cerebral, middle cerebral, and posterior cerebral artery increased in proportion to velocity of internal carotid artery and basilar artery. Vessel velocity correlated with diabetes mellitus, hypertension and hyperlipidemia.

  • PDF