• Title/Summary/Keyword: velocity boundary conditions

Search Result 476, Processing Time 0.029 seconds

Analysis of Flow Reversal by Tidal Elevation and Discharge Conditions in a Tidal River (감조하천에서 조위 및 유량조건에 따른 역류 분석)

  • Song, Chang Geun;Kim, Hyung-Jun;Rhee, Dong Sop
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.104-110
    • /
    • 2014
  • The Han River is the only waterway in Korea where estuary is not blocked by dykes so that tidal water is flowing in and out through the tidal reach. The extreme tidal range in the Yellow Sea causes an intense flood current, stretching over horizontal extents of tens of kilometers into the rivers. To elucidate the flow reversal by discharge conditions and transient tidal level in the Han river, numerical simulations were conducted under 7 boundary conditions for two days with 10 minute time step. As the flow conditions changed from low discharge and high tidal difference to high discharge and low tidal difference, the flow reversals became weaker and the velocity of forward flow direction became higher due to the increased flow momentums and decreased tidal differences. In the case of normal flow, the maximum reverse velocity was 0.4 m/s, which was equivalent to the maximum forward velocity. In addition, the pattern of the development and decay of forward and reverse flow was presented.

Finite element analysis for the flow characteristics along the thickness direction in injection molding (사출성형시 두께방향으로의 유동특성에 관한 유한요소 해석)

  • 이호상;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.1026-1035
    • /
    • 1987
  • The injection molding process is used in the fabrication of a large variety of plastic articles. A numerical simulation of the filling stage along the thickness direction is proposed by combining the free surface boundary condition with the relevant governing equations. The mathematical model is based on the equations of continuity, momentum and energy along with inelastic power-law model and relevant boundary conditions. Due to the significant implications for microstructure development in the pro duct, the fountain effect at the advancing free surface is explicitly taken into consideration in the simulation. The model yields data on free surface shape as well as velocity, pressure, temperature and shear stress distributions within the mold cavity. The rearrangement of the velocity and temperature profiles in the vicinity of the melt front is considered in detail.

STEADY NONLINEAR HYDROMAGNETIC FLOW OVER A STRETCHING SHEET WITH VARIABLE THICKNESS AND VARIABLE SURFACE TEMPERATURE

  • Anjali Devi, S.P.;Prakash, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.245-256
    • /
    • 2014
  • This work is focused on the boundary layer and heat transfer characteristics of hydromagnetic flow over a stretching sheet with variable thickness. Steady, two dimensional, nonlinear, laminar flow of an incompressible, viscous and electrically conducting fluid over a stretching sheet with variable thickness and power law velocity in the presence of variable magnetic field and variable temperature is considered. Governing equations of the problem are converted into ordinary differential equations utilizing similarity transformations. The resulting non-linear differential equations are solved numerically by utilizing Nachtsheim-Swigert shooting iterative scheme for satisfaction of asymptotic boundary conditions along with fourth order Runge-Kutta integration method. Numerical computations are carried out for various values of the physical parameters and the effects over the velocity and temperature are analyzed. Numerical values of dimensionless skin friction coefficient and non-dimensional rate of heat transfer are also obtained.

A NOTE ON THE UNSTEADY FLOW OF DUSTY VISCOUS FLUID BETWEEN TWO PARALLEL PLATES

  • AJADI SURAJU OLUSEGUN
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.393-403
    • /
    • 2005
  • We study the isothermal flow of a dusty viscous incompressible conducting fluid between two types of boundary motions- oscillatory and non-oscillatory, under the influence of gravitational force. Within the frame work of some physically realistic approximations and suitable boundary conditions, closed form solutions were obtained for the velocity profiles and the skin friction of the particulate flow. These results show that for a constant pressure gradient, only the velocity profile of the fluid and the skin friction are unaffected by gravity, while magnetic field is seen to affect both the fluid, particle velocities and the skin friction. Thus, our results are extension of previous results in literature, and graphical demonstration of some these solutions have been presented.

REDUCTION OF HIGH FREQUENCY EXCITATIONS IN A CAM PROFILE BY USING MODIFIED SMOOTHING SPLINE CURVES

  • Kim, D.J.;Nguyen, V.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.59-66
    • /
    • 2007
  • High frequency excitation terms in a cam profile can excite vibration of a cam follower system. In this paper, modified smoothing spline curves are used to reduce the high frequency terms. The essential difference between the proposed method and other existing approaches is its ability to make the principal cam motions smooth while still exactly satisfying boundary conditions of follower displacement, velocity and acceleration. The boundary values usually depend on the ramp properties of a cam. Our method, thus, allows designers to smooth the existing cam motion without any damages on its ramp areas. Because the ramp height, velocity and acceleration are maintained exactly, more radical smoothing is possible. An example shows that the proposed method can be a powerful tool of cam profile smoothing, which removes high frequency components in the cam profile excitations without any changes in ramp properties.

Measurement of Dynamic Crack Propagation Velocity in Polymers (고분자 재료의 동적 균열전파속도 측정)

  • 이억섭;한민구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.947-951
    • /
    • 1989
  • It is well-known that the parameters of dynamic fracture mechanics depend not only on dimensions, loading and boundary conditions but also on the dynamic crack propagation velocity. Because the measurement of dynamic crack propagation velocity measuring device which can easily be expanded without modification is proposed in this report. it was found that the experimentally determined dynamic crack propagation velocity agreed well with those from other investigations in some polymers such as PMMA. Homalite-100 and Epoxy.

An experimental study on the open channel flow with plane wall jet inlet boundary condition and effects of a baffle (평면벽면분류의 유입경계조건을 가지는 개수로 유동 및 배플의 영향에 관한 실험적 연구)

  • 방병렬;설광원;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1399-1406
    • /
    • 1988
  • Flow behaviors of the open channel type flow with its geometric boundary conditions being similar to that of the Multi-Stage-Flash evaporator were studied qualitatively by measuring the velocity distribution. Without a baffle, the flow was in the shape of a simple submerged plane wall jet. At the downstream of this flow, the jet boundary made sharp curve toward the free surface ; this is because the entrainment of the ambient liquid is restricted by the free surface boundary, similar to the Coanda effect. According to the experimental results the level of the free surface appeared to be the most important parameter. The flow with a baffle was in much complicated shape ; especially the recirculating region at the downstream free surface was detected according to the experimental conditions imposed. Inlet liquid velocity, heights of the liquid level and the baffle, and the opening heights of sluice gate of the entrance were the most important parameters in the baffle flow.

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.

Synthetic Turbulence Effect in Subsonic Backward Facing Step Flow Using LES (LES을 이용한 후향 계단 유동에서의 Synthetic turbulence 효과 연구)

  • Ahn, Sang-Hoon;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • The synthetic turbulence generation model for inlet boundary conditions of subsonic Backward Facing Step (BFS) was investigated. The average u-velocity and Reynolds stress at inlet boundary follows experimental data. Synthetic Eddy Method (SEM), random noise, and uniform flow conditions were implemented relative to the synthetic turbulence generation method. A three dimensional Large Eddy Simulation (LES) was applied for turbulent flow simulation. Turbulent and mean flow characteristics such as flow reattachment length, velocity profiles, and Reynolds stress profiles of BFS were compared with respect to the turbulent effects.