• 제목/요약/키워드: vehicular camera

검색결과 13건 처리시간 0.016초

In-Car Video Stabilization using Focus of Expansion

  • Kim, Jin-Hyun;Baek, Yeul-Min;Yun, Jea-Ho;Kim, Whoi-Yul
    • 한국멀티미디어학회논문지
    • /
    • 제14권12호
    • /
    • pp.1536-1543
    • /
    • 2011
  • Video stabilization is a very important step for vision based applications in the vehicular technology because the accuracy of these applications such as obstacle distance estimation, lane detection and tracking can be affected by bumpy roads and oscillation of vehicle. Conventional methods suffer from either the zooming effect which caused by a camera movement or some motion of surrounding vehicles. In order to overcome this problem, we propose a novel video stabilization method using FOE(Focus of Expansion). When a vehicle moves, optical flow diffuses from the FOE and the FOE is equal to an epipole. If a vehicle moves with vibration, the position of the epipole in the two consecutive frames is changed by oscillation of the vehicle. Therefore, we carry out video stabilization using motion vector estimated from the amount of change of the epipoles. Experiment results show that the proposed method is more efficient than conventional methods.

자율주행 차량 시뮬레이션에서의 강화학습을 위한 상태표현 성능 비교 (Comparing State Representation Techniques for Reinforcement Learning in Autonomous Driving)

  • 안지환;권태수
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.109-123
    • /
    • 2024
  • 딥러닝과 강화학습을 활용한 비전 기반 엔드투엔드 자율주행 시스템 관련 연구가 지속적으로 증가하고 있다. 일반적으로 이러한 시스템은 위치, 속도, 방향, 센서 데이터 등 연속적이고 고차원적인 차량의 상태를 잠재 특징 벡터로 인코딩하고, 이를 차량의 주행 정책으로 디코딩하는 두 단계로 구성된다. 도심 주행과 같이 다양하고 복잡한 환경에서는 Variational Autoencoder(VAE)나 Convolutional Neural Network(CNN)과 같은 네트워크를 이용한 효율적인 상태 표현 방법의 필요성이 더욱 부각된다. 본 논문은 차량의 이미지 상태 표현이 강화학습 성능에 미치는 영향을 분석하였다. CARLA 시뮬레이터 환경에서 실험을 수행하였고, 차량의 전방 카메라 센서로부터 취득한 RGB 이미지 및 Semantic Segmented 이미지를 각각 VAE와 Vision Transformer(ViT) 네트워크로 특징 추출하여 상태 표현 학습에 활용하였다. 이러한 방법론이 강화학습에 미치는 영향을 실험하여, 데이터 유형과 상태 표현 기법이 자율주행의 학습 효율성과 결정 능력 향상에 어떤 역할을 하는지를 실험하였다.

C-ITS 환경에서 차량의 고속도로 주행 시 주변 환경 인지를 위한 실시간 교통정보 및 안내 표지판 인식 (Real-Time Traffic Information and Road Sign Recognitions of Circumstance on Expressway for Vehicles in C-ITS Environments)

  • 임창재;김대원
    • 전자공학회논문지
    • /
    • 제54권1호
    • /
    • pp.55-69
    • /
    • 2017
  • 최근 지능화된 사물들이 연결되는 네트워크를 통해 사람과 사물, 사물과 사물 간에 상호 소통하는 응용프로그램 및 하드웨어가 잇달아 소개되고 있다. 이런 추세에 더불어, 상황인식 기반의 지식이 결합되어 인공지능 서비스를 제공하는 사물인터넷(IoT : Internet of Things) 환경이 급속도로 발전하고 있다. 사물인터넷을 활용한 산업 중 하나로 자동차 산업을 들 수 있다. 최근에는 연료 효율과 원활한 교통 환경뿐만 아니라 운전자와 승객의 안전을 최우선으로 하는 자율 주행 자동차가 화두가 되고 있다. 이전부터 센서, 라이다, 카메라, 레이더 기술 등을 이용하여 자율 주행 자동차를 위한 주위 환경 인식에 대한 연구가 활발히 진행돼 왔다. 현대에는 차세대 무선통신 기술인 WAVE를 기반으로 차량과 차량, 차량과 주변의 교통 인프라와의 통신을 통한 네트워킹을 형성하고 주변 환경에 대한 정보를 공유하는 등 사물인터넷을 활용한 자율 주행 자동차 연구가 활발히 진행되고 있다. 본 논문에서는 자율 주행 자동차의 주위 환경 인식 기술의 일환으로 고속도로 교통 표지판 및 전방 잔여거리 인식에 관한 연구를 진행하였다. 본 연구는, 도로 교통 표지판이 설치 규정에 의하여 정해진 규격과 지정된 설치 위치를 갖고 있다는 특성을 이용하였다. 궁극적으로, 고속도로 주행 중 촬영한 영상을 이용하여 해당 비디오 영상 내에서 도로 교통 표지판을 인식한 뒤 추가적으로 표지판에 씌어 있는 문자 정보를 인식하고 이를 운전자 및 승객이 인지하도록 하는 이론 학습과 해당실험 결과를 제시하였다.