• 제목/요약/키워드: vehicle trajectory

검색결과 386건 처리시간 0.027초

가상의 목표점을 이용한 무인 잠수정의 충돌회피 귀환 경로계획 (Virtual Goal Method for Homing Trajectory Planning of an Autonomous Underwater Vehicle)

  • 박성국;이지홍;전봉환;이판묵
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.61-70
    • /
    • 2009
  • An AUV (Autonomous Underwater Vehicle) is an unmanned underwater vessel to investigate sea environments and deep sea resource. To be completely autonomous, AUV must have the ability to home and dock to the launcher. In this paper, we consider a class of homing trajectory planning problem for an AUV with kinematic and tactical constraints in horizontal plane. Since the AUV under consideration has underactuated characteristics, trajectory for this kind of AUV must be designed considering the underactuated characteristics. Otherwise, the AUV cannot follow the trajectory. Proposed homing trajectory panning method that called VGM (Virtual Goal Method) based on visibility graph takes the underactated characteristics into consideration. And it guarantees shortest collision free trajectory. For tracking control, we propose a PD controller by simple guidance law. Finally, we validate the trajectory planning algorithm and tracking controller by numerical simulation and ocean engineering basin experiment in KORDI.

위성발사체의 궤적최적화와 최적 유도 알고리듬 설계 (Trajectory Optimization and Optimal Explicit Guidance Algorithm Design for a Satellite Launch Vehicle)

  • 노웅래;김유단;송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.173-182
    • /
    • 2001
  • Ascent trajectory optimization and optimal explicit guidance problems for a satellite launch vehicle in a 2-dimensional pitch plane are studied. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the pitch attitude control variable, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn are imposed. An optimal explicit guidance algorithm in the exoatmospheric phase is also presented, the guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. To verify the optimality and accuracy of the algorithm simulations are performed.

  • PDF

정적 장애물 회피를 위한 경로 계획: ADAM III (Path Planning for Static Obstacle Avoidance: ADAM III)

  • 최희재;송봉섭
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.241-249
    • /
    • 2014
  • This paper presents a path planning algorithm of an autonomous vehicle (ADAM III) for collision avoidance in the presence of multiple obstacles. Under the requirements that a low-cost GPS is used and its computation should be completed with a sampling time of sub-second, heading angle estimation is proposed to improve performance degradation of its measurement and a hierarchical structure for path planning is used. Once it is decided that obstacle avoidance is necessary, the path planning consists in three steps: waypoint generation, trajectory candidate generation, and trajectory selection. While the waypoints and the corresponding trajectory candidates are generated based on position of obstacles, the final desired trajectory is determined with considerations of kinematic constraints as well as an optimal condition in a term of lateral deviation. Finally the proposed algorithm was validated experimentally through field tests and its demonstration was performed in Autonomous Vehicle Competition (AVC) 2013.

차량 궤적 예측기법을 이용한 충돌 경보/회피 알고리듬 개발 (Development of Collision Warning/Avoidance Algorithms using Vehicle Trajectory Prediction Method)

  • 김재호;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.647-652
    • /
    • 2000
  • This paper proposes a collision warning/avoidance algorithm using a trajectory prediction method. This algorithm is based on 2-dimensional kinematics and the Kalman filter has been used to obtain the information of the object vehicle. This algorithm has been investigated via computer simulation and showed a good trajectory prediction performance. The proposed collision warning/avoidance algorithm would enhanced driver acceptance for a collision warning/avoidance system.

  • PDF

수중 선체에 장착된 로봇팔 궤적의 비귀환형 적응제어 (Non-regressor Based Adaptive Tracking Control of an Underwater Vehicle-mounted Manipulator)

  • 여준구
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.7-12
    • /
    • 2000
  • This paper presents a non-regressor based adaptive control scheme for the trajectory tracking of underwater vehicle-mounted manipulator systems(UVMS). The adaptive control system includes a class of unmodeled effects is applied to the trajectory control of an UVMS. The only information required to implement this scheme ios the upper bound and lowe bound of the system parameter matrices the upper bound of unmodeled effects the number of joints the position and attitude of the vehicle and trajectory commands. The adaptive control law estimates control gains defined by the combinations of the bounded constants of system parameter matrices and of a filtered error equation. To evaluate the performance of the non-regressor based adaptive controller computer simulation was performed with a two-link planar robot model mounted on an underwater vehicle. The hydrodynamic effects acting on the manipulator are included. It is assumed that the vehicle's motion is slow and can be predicted with a proper compensator.

  • PDF

차량 이동궤적 기반 버스정차대 기하구조 연구 (Geometric Design of Bus Bay Based on Vehicle Trajectory Analysis)

  • 김용석;이석기
    • 한국도로학회논문집
    • /
    • 제17권6호
    • /
    • pp.33-36
    • /
    • 2015
  • PURPOSES : It is desirable for buses to be parallel to the face of the bus shelter at a bus stop. In this way, passengers can safely use the buses without moving into the vehicle area. The study was a review of the current bus bay geometric guidelines, to determine whether they lead buses to stop parallel to the face of the bus shelter by analyzing vehicle trajectory. METHODS : A commercial software program for vehicle trajectory analysis was used under our assumptions about bus dimensions and geometric values. The final position of the bus was analyzed for multiple trajectory simulations, reflecting various geometric alternatives. RESULTS : Within the scope of the study, we concluded that the current design guidelines need to be revised by the design values suggested by the study. CONCLUSIONS : The results of the study suggested alternative design values for bus bay geometry, based on the assumption that buses should be parallel to the face of the bus shelter in order to prevent passengers from moving into the vehicle area.

Stability Research on Aerodynamic Configuration Design and Trajectory Analysis for Low Altitude Subsonic Unmanned Air Vehicle

  • Rafique, Amer Farhan;He, LinShu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.690-699
    • /
    • 2008
  • In this paper a conventional approach for design and analysis of subsonic air vehicle is used. First of all subsonic aerodynamic coefficients are calculated using Computational Fluid Dynamics(CFD) tools and then wind-tunnel model was developed that integrates vehicle components including control surfaces and initial data is validated as well as refined to enhance aerodynamic efficiency of control surfaces. Experimental data and limited computational fluid dynamics solutions were obtained over a Mach number range of 0.5 to 0.8. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is comparable to previously tested subsonic vehicle models. Mathematical model of the dynamic equations in 6-Degree of Freedom(DOF) is then simulated using MATLAB/SIMULINK to simulate trajectory of vehicle. Effect of altitude on range, Mach no and stability is also shown. The approach presented here is suitable enough for preliminary conceptual design. The trajectory evaluation method devised accurately predicted the performance for the air vehicle studied. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of similar air vehicle simulations. We execute a set of example problems which solve the dynamic equations to find the aircraft trajectory given specified control inputs.

  • PDF

지구-달 위상전이궤적에서 발사체 투입오차가 중간경로수정기동에 미치는 영향 분석 (An Analysis of Mid-Course Correction Maneuvers according to Launch-Vehicle Dispersion in Earth-Moon Phasing-Loop Trajectory)

  • 최수진;이동헌;석병석;민승용;류동영
    • 항공우주시스템공학회지
    • /
    • 제10권4호
    • /
    • pp.35-40
    • /
    • 2016
  • 중간경로수정기동은 발사체 분리벡터를 보정하기 위해 필요하다. 직접전이궤적의 경우에는 약 3~4회의 중간경로수정 기동이 요구되었다. 그러나 위상전이궤적의 직접전이궤적에 비해 전이궤적이 길기 때문에 중간경로수정기동의 전략이 달라진다. 위상전이궤적을 이용하는 궤도선은 지구를 여러 번 돌기 때문에 근지점 및 원지점 등 발사체 투입오차를 보정하기 위한 좋은 지점을 여러 번 만나게 된다. 발사체 분리 오차가 크다 하더라도 중간경로수정기동의 전략이 좋으면 적은양의 보정 기동으로도 큰 오차를 보정할 수 있다. 본 논문은 높은 발사체 투입오차를 보정하기 위한 위상전이궤적의 절차와 전략을 기술한다.

정상 해석 기반의 데이터베이스를 이용한 TST 비행체의 분리 궤도 예측 (PREDICTION OF SEPARATION TRAJECTORY FOR TSTO LAUNCH VEHICLE USING DATABASE BASED ON STEADY STATE ANALYSIS)

  • 조재현;안상준;권오준
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.86-92
    • /
    • 2014
  • In this paper, prediction of separation trajectory for Two-stage-To-Orbit space launch vehicle has been numerically simulated by using an aerodynamic database based on steady state analysis. Aerodynamic database were obtained for matrix of longitudinal and vertical positions. The steady flow simulations around the launch vehicle have been made by using a 3-D RANS flow solver based on unstructured meshes. For this purpose, a vertex-centered finite-volume method was adopted to discretize inviscid and viscous fluxes. Roe's finite difference splitting was utilized to discretize the inviscid fluxes, and the viscous fluxes were computed based on central differencing. To validate this flow solver, calculations were made for the wind-tunnel experiment model of the LGBB TSTO vehicle configuration on steady state conditions. Aerodynamic database was constructed by using flow simulations based on test matrix from the wind-tunnel experiment. ANN(Artificial Neural Network) was applied to construct interpolation function among aerodynamic variables. Separation trajectory for TSTO launch vehicle was predicted from 6-DOF equation of motion based on the interpolated function. The result of present separation trajectory calculation was compared with the trajectory using experimental database. The predicted results for the separation trajectory shows fair agreement with reference[4] solution.

횡방향 기동을 하는 위성발사체의 3차원 궤적최적화와 직접식 유도기법 (3-Dimensional Trajectory Optimization and Explicit Guidance for a Satellite Launch Vehicle with Yaw Maneuver)

  • 노웅래;김유단;박정주;탁민제
    • 제어로봇시스템학회논문지
    • /
    • 제8권7호
    • /
    • pp.613-623
    • /
    • 2002
  • Ascent trajectory optimization and explicit guidance problems for a satellite launch vehicle with yaw maneuver in a 3-dimension are considered. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the inertial pitch and yaw attitude control variables, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn and range safety conditions are imposed. An explicit inertial guidance algorithm in the exoatmospheric phase is also presented. The guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. The liquid propelled Delta 2910 launch vehicle is used as a numerical model.