• Title/Summary/Keyword: vehicle traffic

Search Result 2,233, Processing Time 0.03 seconds

Traffic Information Service Model Considering Personal Driving Trajectories

  • Han, Homin;Park, Soyoung
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.951-969
    • /
    • 2017
  • In this paper, we newly propose a traffic information service model that collects traffic information sensed by an individual vehicle in real time by using a smart device, and which enables drivers to share traffic information on all roads in real time using an application installed on a smart device. In particular, when the driver requests traffic information for a specific area, the proposed driver-personalized service model provides him/her with traffic information on the driving directions in advance by predicting the driving directions of the vehicle based on the learning of the driving records of each driver. To do this, we propose a traffic information management model to process and manage in real time a large amount of online-generated traffic information and traffic information requests generated by each vehicle. We also propose a road node-based indexing technique to efficiently store and manage location-based traffic information provided by each vehicle. Finally, we propose a driving learning and prediction model based on the hidden Markov model to predict the driving directions of each driver based on the driver's driving records. We analyze the traffic information processing performance of the proposed model and the accuracy of the driving prediction model using traffic information collected from actual driving vehicles for the entire area of Seoul, as well as driving records and experimental data.

A development of traffic information detection using camera

  • 김양주;한민홍
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.316-323
    • /
    • 1995
  • This paper presents an image processing technique to get traffic information such as vehicle volume, velocity, and occupancy for measuring the traffic congestion rate. To obtain these information, two horizontal lines are previously set on the screen. A moving vehicle is detected using the gray level difference on each line, and also template matching method at night. Threshold values are determined by sampling pavement grey level, and updated dynamically to cope with the change of ambient light conditions. These technique is successfully used to calculate vehicle volume, occupancy, and velocity. This study can be applied to traffic signal control system for minimizing traffic congestion in urban areas.

  • PDF

Optimal Traffic Signal Light (최적교통신호등)

  • 홍유식
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.4
    • /
    • pp.181-192
    • /
    • 2003
  • Increased vehicles on the restricted road, the conventional traffic light to losses the function of optimal cycle. The conventional traffic light dose not consider passenger car unit ,offset, and length of traffic intersection. As a result, 30~45% of conventional traffic cycle does not match the present traffic cycle. In this paper, we study the disard vantage of conventional traffic light and improve the vehicle average waiting time in the traffic intersection and vehicle average speed using fuzzy logic. Moreover, it will be able to forecast the optimal traffic information, road under construction and dangerous road using internet.

Multi-Agent for Traffic Simulation with Vehicle Dynamic Model I : Development of Traffic Environment (차량 동역학을 이용한 멀티에이전트 기반 교통시뮬레이션 개발 I : 교통 환경 개발)

  • 조기용;권성진;배철호;서명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.125-135
    • /
    • 2004
  • The validity of simulation has been well-established for decades in areas such as computer and communication system. Recently, the technique has become entrenched in specific areas such as transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and their driver's characteristics, even though it is known that they are important factors for any traffic flow analysis, have never been considered sufficiently. In this paper, the traffic simulation using a multi-agent approach with considering vehicle dynamics is proposed. The multi-agent system is constructed with the traffic environment and the agents of vehicle and driver. The traffic environment consists of multi-lane roads, nodes, virtual lanes, and signals. To ensure the fast calculation, the agents are performed on the based of the rules to regulate their behaviors. The communication frameworks are proposed for the agents to share the information of vehicles' velocity and position. The model of a driver agent which controls a vehicle agent is described in the companion paper. The vehicle model contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation has proceeded for an interrupted and uninterrupted flow model. The result has shown that the driver agent performs human-like behavior ranging from slow and careful to fast and aggressive driving behavior, and that the change of the traffic state is closely related with the distance and the signal delay between intersections. The system developed shows the effectiveness and the practical usefulness of the traffic simulation.

STOP AND GO CRUISE CONTROL

  • Venhovens, P.;Naab, K.;Adiprasito. B.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.61-69
    • /
    • 2000
  • This paper will address the basic requirements for realizing a stop and go cruise control system. Issues discussed comprise: functional, sensor and basic HMI requirements, primary characterization of naturalistic stop & go driving, and the basic approach of the transformation of situational knowledge in an elementary controller.

  • PDF

A Study on the Possibility of Using the Aerial-Based Vehicle Detection System for Real-Time Traffic Data Collection (항공 기반 차량검지시스템의 실시간 교통자료 수집에의 활용 가능성에 관한 연구)

  • Baik, Nam Cheol;Lee, Sang Hyup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.129-136
    • /
    • 2012
  • In the US, Japan and Germany the Aerial-Based Vehicle Detection System, which collects real-time traffic data using the Unmanned Aerial Vehicle (UAV), helicopters or fixed-wing aircraft has been developed for the last several years. Therefore, this study was done to find out whether the Aerial-Based Vehicle Detection System could be used for real-time traffic data collection. For this purpose the study was divided into two parts. In the first part the possibility of retrieving real-time traffic data such as travel speed from the aerial photographic image using the image processing technique was examined. In the second part the quality of the retrieved real-time traffic data was examined to find out whether the data are good enough to be used as traffic information source. Based on the results of examinations we could conclude that it would not be easy for the Aerial- Based Vehicle Detection System to replace the present Vehicle Detection System due to technological difficulties and high cost. However, the system could be effectively used to make the emergency traffic management plan in case of incidents such as abrupt heavy rain, heavy snow, multiple pile-up, etc.

Traffic Measurement : Moving Vehicle Method Using CCTV (교통량 측정 : CCTV를 이용한 주행 차량 조사법)

  • Huh, Moon-Hang;Shin, Seong-Yoon;Rhee, Yang-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2575-2580
    • /
    • 2013
  • In this paper, we watch out key measure of the level of transportation service about travel time and delay time. And we measured vehicle traffic by moving vehicle method using CCTV which is one of the travel time measure. We should be measured in place of continuous traffic flow characteristics with wide traffic light interval. In addition, traffic flow on the other side of the interval must be sufficiently identifiable and at the end of this section must be possible U-turn. This method it requires only the driver of the vehicle because of the CCTV measure. In addition, We cannot require time, distance, and traffic equipment that can be recorded. Because equipped with the software to do that. In addition to traffic, average travel time, average space speed, traffic density are also available.

A Study on the Development and Standard Specification of Unmanned Traffic Enforcement Equipment for Two-Wheeled Vehicles (이륜차 무인교통단속장비 개발 및 표준규격 연구)

  • Byung chul In;Seong jun Yoo;Eum Han;Kyeongjin Lee;Sungho Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.126-142
    • /
    • 2023
  • The purpose of this study is to develop unmanned traffic enforcement equipment and standard specifications for the prevention of traffic accidents and violations of the two-wheeled vehicle laws. To this end, we conducted a review of the problems and new technologies of the currently operating unmanned traffic enforcement equipment on two-wheeled vehicles. And through a survey, the feasibility of introducing unmanned traffic enforcement equipment for two-wheeled vehicles and the current status of technology were investigated. In addition, the two-wheeled vehicle enforcement function was implemented through field tests of the development equipment, and the addition of enforcement targets and the number recognition rate were improved through performance improvement. Based on the results of field experiments and performance evaluation, performance standards for unmanned two-wheeled vehicle traffic enforcement equipment were prepared, and in the communication protocol, two-wheeled vehicle-related matters were newly composed in the vehicle classification code and violation items to develop standards.

Artificial Traffic Signal Light using Fuzzy Rules

  • Kim Chjong-Soo;Hong You-Sik
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.1005-1016
    • /
    • 2004
  • The conventional traffic light loses the function of optimal traffic signal cycle. And so, 30-45% of conventional traffic signal cycle is not matched to the present traffic signal cycle. In this paper proposes electro sensitive traffic light using fuzzy rules which will reduce the average vehicle waiting time and improve average vehicle speed. This paper is researching the storing method of 40 different kinds of sensor input conditions. Such as, car speed, delay· in starting time and the volume of cars in the real traffic situation. It will estimate the optimal green time in the 10 different intersections using Intelligent fuzzy method. Computer simulation results prove that reducing the average vehicle waiting time and offset better than fixed signal method which doesn't consider vehicle length.

  • PDF

Forecasting of Real Time Traffic Situation (실시간 교통상황 예보)

  • 홍유식;박종국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.330-337
    • /
    • 2000
  • This paper proposes a new concept of coordinating green this which controls 10 traffic intersection systems. For instance, if we have a baseballs game at 8 pm today, traffic volume toward the baseball game at 8 pm today, traffic volume toward the baseball game will be incr eased 1 hour or 1 hour 30 minutes before the baseball game. at that time we can not pred ict optimal green time Even though there have smart elctrosensitive traffic light system. Therefore, in this paper to improve average vehicle speed and reduce average vehicle waiting time, we created optimal green time using fuzzy rules and neural network. Computer simulation results proved reducing average vehicle waiting time proposed coordinating green time better than electro-sensitive traffic light system. Therefore, in this paper to improvevehicle speed and reduce average vehicle waiting time, we created optiual green time fuzzy rules and neural network. Computer simulation results proved reducing average vehicle waiting time which proposed coordinating green time better than electro-sensitive traffic light system dosen't consider coordinating green time.

  • PDF