• 제목/요약/키워드: vehicle routing

검색결과 339건 처리시간 0.026초

배차문제 : 연구현황과 전망 (Vehicle Fleet Planning Problems : The State of the Art and Prospects)

  • 송성헌;박순달
    • 한국국방경영분석학회지
    • /
    • 제12권2호
    • /
    • pp.37-55
    • /
    • 1986
  • Vehicle fleet planning problem is generic name given to a whole class of practical decision making problems which find the vehicle routes and schedules to accomplish the reqired service to customers using vehicles. In this paper the various problems are classified into the three groups according to their characteristics: (1) vehicle routing problems, (2) vehicle scheduling problems, and (3) vehicle routing and scheduling problems. The State of the art of each group is described and the future research directions are presented.

  • PDF

A methodology for the flexible AGV routing

  • 김지표
    • 대한산업공학회지
    • /
    • 제23권4호
    • /
    • pp.719-728
    • /
    • 1997
  • In the AGV routing a vehicle can select the shortest route on which no conflicts are anticipated. The procedure includes time constraint and the node/arc occupation times of vehicles in order to locate the conflicting paths. The slight differences among AGV routing algorithms exist in identifying the conflict regions encountered while reaching out to the destination node. In this paper, a novel approach to the use of the re-routing scheme is presented. It will be used to minimize the travel distance of vehicles in a regular vehicle routing process rather than to cope with emergency situations. The proposed algorithm provides existing active vehicles with the ability of changing their current paths for a new vehicle whenever the equal-distance paths exist, in on attempt to optimize the AGV transportation system. This ability is possible because of the flexibility of on AGV system controlled by a computer system.

  • PDF

역물류 환경을 고려한 복수차고지 다용량 차량경로문제 (Dual-Depot Heterogeneous Vehicle Routing Problem Considering Reverse Logistics)

  • 정영훈;김각규;이상헌
    • 경영과학
    • /
    • 제29권1호
    • /
    • pp.89-99
    • /
    • 2012
  • In this paper, we deal with the dual-depot heterogeneous vehicle routing problem with simultaneous delivery and pick up(DH-VRPSDP) in reverse logistics. The DH-VRPSDP is a problem of designing vehicle routes in a day of given vehicle to minimize the sum of fixed cost and variable cost over the planning horizon. Each customer can be visited only once according to the service combinations of that customer. Due to the complexity of the problem, we suggest a heuristic algorithm in which an initial solution is obtained by changing the customer and the vehicle simultaneously and then it is improved. A performance of the proposed algorithm was compared to both well-known results and new test problems.

시간제약을 가진 다회방문 차량경로문제에 대한 휴리스틱 알고리즘 (A heuristic algorithm for the multi-trip vehicle routing problem with time windows)

  • 김미이;이영훈
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.1740-1745
    • /
    • 2006
  • This paper is concerned with a novel heuristic algorithm for the multi-trip vehicle routing problem with time windows. The objective function is the minimization of total vehicle operating time, fixed cost of vehicle and the minimization of total lateness of customer. A mixed integer programming formulation and a heuristic algorithm for a practical use are suggested. A heuristic algorithm is constructed two phases such as clustering and routing. Clustering is progressed in order to assign appropriate vehicle to customer, and then vehicle trip and route are decided considering traveling distance and time window. It is shown that the suggested heuristic algorithm gives good solutions within a short computation time by experimental result.

  • PDF

Multi Objective Vehicle and Drone Routing Problem with Time Window

  • Park, Tae Joon;Chung, Yerim
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.167-178
    • /
    • 2019
  • In this paper, we study the multi-objectives vehicle and drone routing problem with time windows, MOVDRPTW for short, which is defined in an urban delivery network. We consider the dual modal delivery system consisting of drones and vehicles. Drones are used as a complement to the vehicle and operate in a point to point manner between the depot and the customer. Customers make various requests. They prefer to receive delivery services within the predetermined time range and some customers require fast delivery. The purpose of this paper is to investigate the effectiveness of the delivery strategy of using drones and vehicles together with a multi-objective measures. As experiment datasets, we use the instances generated based on actual courier delivery data. We propose a hybrid multi-objective evolutionary algorithm for solving MOVDRPTW. Our results confirm that the vehicle-drone mixed strategy has 30% cost advantage over vehicle only strategy.

A Generous Cooperative Routing Protocol for Vehicle-to-Vehicle Networks

  • Li, Xiaohui;Wang, Junfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5322-5342
    • /
    • 2016
  • In vehicle-to-vehicle (V2V) networks, where selfishness degrades node activity, countermeasures for collaboration enforcement must be provided to enable application of a sage and efficient network environment. Because vehicular networks feature both high mobility and various topologies, selfish behavior judgment and establishment of a stable routing protocol become intensely challenging. In this paper, a two-phase-based generous cooperative routing protocol (called GEC) is presented for V2V networks to provide resistance to selfishness. To detect selfish behaving vehicles, a packet forwarding watchdog and an average connection rate based on the multipath weight method are used, where evidence is gathered from different watchdogs. Then, multihop relay decisions are made using a generous cooperative algorithm based on game theory. Finally, through buffering of the multiple end-to-end paths and judicious choice of optimal cooperative routes, route maintenance phase is capable of dealing with congestion and rapidly exchanging traffic. Specifically, it is proved that the GEC is theoretically subgame perfect. Simulation results show that for V2V networks with inherently selfish nodes, the proposed method isolates uncooperative vehicles and is capable of accommodating both the mobility and congestion circumstances by facilitating information dissemination and reducing end-to-end delay.

이동하는 차량 간 통신의 신뢰성 향상을 위한 개선된 탐욕 메시지 포워딩 프로토콜 (An Enhanced Greedy Message Forwarding Protocol for Increasing Reliability of Mobile Inter-Vehicle Communication)

  • 류민우;차시호;조국현
    • 대한전자공학회논문지TC
    • /
    • 제47권4호
    • /
    • pp.43-50
    • /
    • 2010
  • V2V(Vehicle-to-Vehicle)는 VANET(Vehicle Ad-hoc Network)의 한 형태로 차량 간 통신을 제공하며 차량 안전사고를 줄일 수 있는 해결책으로 알려져 있다. 이러한 V2V는 도로의 특성 및 차량 구성 장치의 특성으로 인하여 GPSR(Greedy Perimeter Stateless Routing)과 같은 지리 기반 라우팅 프로토콜이 매우 적합하지만, GPSR의 탐욕모드의 정책에 의해서 stale 노드가 local maximum에 직면하는 문제가 발생한다. 이러한 문제점은 GPSR에서의 복구모드 정책에 의하여 해결될 수 있지만 복구모드 시 전송되는 데이터의 손실이 발생할 수 있다는 단점이 있다. 따라서 본 논문에서는 V2V 환경에서의 이러한 GPSR 문제를 해결하기위해 보다 나은 데이터 신뢰성을 제공하는 GPRR(Greedy Perimeter Reliable Routing) 프로토콜을 제안한다. ns-2를 이용한 성능분석 결과 제안된 GPRR이 탐욕모드 시 local maximum에 직면할 가능성을 현저히 줄임으로써 GPSR 보다 우수함을 입증하였다.

GIS Oriented Platform For Solving Real World Logistic Vehicle Routing Problem

  • Md. Shahid Uz Zaman;Chen, Yen-Wei;Hayao Miyagi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1248-1251
    • /
    • 2002
  • Logistics optimization problems related with vehicle routing such as warehouse locating, track scheduling, customer order delivery, wastage pickup etc. are very interesting and important issues to date. Many Vehicle Routing and Scheduling Systems (VRSS) have been developed/proposed to optimize the logistics problems. But majority of them are dedicated to a particular problem and are unable to handle the real world spatial data directly. The system developed for one problem may not be suitable for others due to inter-problem constraint variations. The constraints may include geographical, environmental and road traffic nature of the working region along with other constraints related with the problem. So the developer always needs to modify the original routing algorithm in order to fulfill the purpose. In our study, we propose a general-purpose platform by combining GIS road map and Database Management System (DBMS), so that VRSS can interact with real world spatial data directly to solve different kinds of vehicle routing problems. Using the features of our developed system, the developer can frequently modify the existing algorithm or create a new one to serve the purpose.

  • PDF

배달과 수거가 혼합된 차량경로 결정문제를 위한 유전 알고리듬의 개발 (A Genetic Algorithm for Vehicle Routing Problems with Mixed Delivery and Pick-up)

  • 정은용;박양병
    • 대한산업공학회지
    • /
    • 제30권4호
    • /
    • pp.346-354
    • /
    • 2004
  • Most industrial logistic systems have focused on carrying products from manufacturers or distribution centers to customers. In recent years, they are faced with the problem of integrating reverse flows into their transportation systems. In this paper, we address the vehicle routing problems with mixed delivery and pick-up(VRPMDP). Mixed operation of delivery and pick-up during a vehicle tour requires rearrangement of the goods on board. The VRPMDP considers the reshuffling time of goods at customers, hard time windows, and split operation of delivery and pick-up. We construct a mixed integer mathematical model and propose a new genetic algorithm named GAMP for VRPMDP. Computational experiments on various types of test problems are performed to evaluate GAMP against the modified Dethloff's algorithm. The results show that GAMP reduces the total vehicle operation time by 5.9% on average, but takes about six times longer computation time.

A 3-D Genetic Algorithm for Finding the Number of Vehicles in VRPTW

  • Paik, Si-Hyun;Ko, Young-Min;Kim, Nae-Heon
    • 산업경영시스템학회지
    • /
    • 제22권53호
    • /
    • pp.37-44
    • /
    • 1999
  • The problem to be studied here is the minimization of the total travel distance and the number of vehicles used for delivering goods to customers. Vehicle routes must also satisfy a variety of constraints such as fixed vehicle capacity, allowed operating time. Genetic algorithm to solve the VRPTW with heterogeneous fleet is presented. The chromosome of the proposed GA in this study has the 3-dimension. We propose GA that has the cubic-chromosome for VRPTW with heterogeneous fleet. The newly suggested ‘Cubic-GA (or 3-D GA)’ in this paper means the 2-D GA with GLS(Genetic Local Search) algorithms and is quite flexible. To evaluate the performance of the algorithm, we apply it to the Solomon's VRPTW instances. It produces a set of good routes and the reasonable number of vehicles.

  • PDF