• Title/Summary/Keyword: vehicle exhaust

Search Result 486, Processing Time 0.025 seconds

A Study on the Reduction of Diesel-Engine Emissions (디젤엔진 배기가스의 저감에 관한 연구)

  • Hur, Youn-Bok;Chung, Soon-Suk;Kim, Kwang-Soo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.11a
    • /
    • pp.245-252
    • /
    • 2012
  • Internal engine is the main power source of vehicle and is the main source of air pollution. To satisfy this getting rigorous emission regulation, it must be solved simultaneously the dilemma of reducing emission gas and increasing heat efficiency. Diesel engine is preferred compare with gasoline engine in aspect of energy consumption but it must be solved reducing the containing of NOx, CO and HC. In this study 1. Looking for alternative of performance improvement of Exhaust Gas Recirculation(EGR) which is emission gas reduction system, 2. Reducing malfunction of controlling emission gas 3. Made possible precision control.

  • PDF

Thermoelectric Power Generation System with Loop Thermosyphon (루프형 열사이폰을 이용한 열전발전 시스템)

  • Kim, Sun-Kook;Rhi, Seok-Ho;Won, Byung-Chul;Kim, Dae-Hyun;Lee, Chung-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.718-721
    • /
    • 2009
  • A new progressive advanced approach (Loop thermosyphon Thermoelectric Power generation System) is suggested to optimize heat recovery ability from vehicle exhaust gas. As an initial look at device feasibility, the present new TE system adopted the loop thermosyphon as a cooling heat exchanger. The TE system with loop thermosyphon was investigated in terms of working fluids, instability of system, amount of working fluid, and so on. Basically, the present experimental works have been focused on finding the optimum working condition of the system to improve thermoelectric power output and to obtain stable power generation to operate hybrid vehicles. The present experimental results with the loop thermosyphon TE module shows possibilities as an improved TE system for future thermoelectric hybrid vehicles.

An Experimental Study on Determination of Capacity of Catalysts in 2 -Catalyst System (2-촉매 시스템에서의 촉매 용량 결정에 대한 실험적 연구)

  • Ko, Kwang-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.11-15
    • /
    • 2003
  • There are various method for the LEV(Low Emission Vehicle) regulation, but 2-catalyst system using one catalyst near exhaust manifold and another catalyst underfloor, is the most popular. This system uses the proven catalyst technology and doesn't use energy. But it is difficult to determine capacity of the two catalysts. So an optimization method to determine the capacity has been proposed by other researcher. It uses the fact that emission decreases with capacity increasing, but the decreasing ratio slows down in high capacity range. It means that the emission and capacity of catalyst is exponentially decreasing relation. In this paper this method will be verified with various experiments. And this method was proven to be very useful to determine the capacity of two catalysts system.

  • PDF

The Effects of EGR and EGR Induction Point on Combustion Noise of a Passenger Diesel Vehicle (승용 디젤엔진의 EGR과 Induction위치에 따른 소음 영향)

  • Kang, Sang-Kyu;Kim, Jae-Heon;Baek, Sung-Nam;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.393-396
    • /
    • 2007
  • EGR is well established and efficient means to reduce NOx emissions. The increase of EGR rate affects the ignition delay of the combustion due to the lower oxygen availability. The increasing of the ignition delay period causes large combustion noise. In this study, the effects of EGR and Induction Point on combustion noise are investigated by measuring cylinder pressure and noise. As a result, The Combustion noise is markedly increased under the application of EGR. The increased premixed distance by displacing EGR Induction point in flow direction causes the uniform EGR distribution and the modulation level of the combustion noise is reduced slightly.

  • PDF

Development of Sound Quality for a Vehicle by Controlling CVVT (CVVT 제어를 이용한 차량 음질 개발)

  • Kim, Young-Ki;Cho, Teock-Hyeong;Kim, Jae-Heon;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.622-625
    • /
    • 2007
  • For optimizing the performance of SI engine such as engine torque, fuel consumption, and emissions, systems for variable valve timing were developed by many automotive researchers. In this work, we investigated the relationship between valve timing and intake orifice noise to improve the NVH (Noise, Vibration and Harshness) performance as well as engine torque and power. Two approaches are conducted, which are engine dynamometer testing and 1-D simulation analysis. Experimental data were measured on about 21 different operating conditions. This experiment shows that the intake and exhaust valve timing related to overlap period influence on the NVH performance, especially intake orifice noise of engine at given range of operation conditions. Similar results are achieved by using 1-D simulation analysis. It is concluded that the optimal strategies of controlling valve timing and tuning intake systems, are necessary to develop engines or vehicles with good sound quality.

  • PDF

Study on Performance and An Exhaust Emission by Bio-Diesel Deterioration and Engine Load Rate at Heavy-Duty Diesel Engine (대형디젤기관에서 바이오디젤 열화와 엔진부하에 따른 배출가스특성 및 성능에 관한 연구)

  • Park, Man-Jae;Kim, Mi-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.56-63
    • /
    • 2007
  • Modern diesel vehicle has to comply with the EURO IV, V regulation with low level of particulate matter and smoke emission Moreover, emission standards of each countries are becoming stringent in advanced countries such as USA and Europe. Because Bio-diesel is similar to diesel fuel, it is essential to judge the environmental and health effects deriving from the use of Bio-diesel in diesel engine. The deterioration characteristics of emission in accordance with aging vehicles must be regulated for Bio-diesel. Therefore, under 1200 driving hours, 220,000km driving distance condition and full load, the deterioration characteristics of emission were estimated. We could reduce sulfur contents of fuel, particulate matter and smoke emission by using Bio-diesel and conform the influence of engine performance, emission, and fuel consumption by Bio-diesel deterioration

Concentrations and Distributions of PAHs in Soils Sampled at the Roadsides in Seoul (서울시 도로 퇴적토사중 PAHs의 농도 및 분포)

  • 조기철;황경철;임철수;조강래;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.5
    • /
    • pp.517-521
    • /
    • 1996
  • Surface soils sampled at several sites in Seoul, Korea were analyzed to determine the concentrarions and distributions of PAHs. Results are as follow; 1) The Bap concentration in soils was found to be the highest in the industrial area (128 ng/g) and lowest in the residential area(19 ng/g). 2) The Py concentration in soils was highest in the tunnel area (1,110 ng/g) and the lowest in the Achasan area(18 ng/g). 3) The BghiP concentration in soils was higher in road (538 ng/g) and tunnel (532 ng/g) areas than in others areas. 4) It was shown that the PAHs concentrations in residential areas were affected by combution of fossil fuel, those in industrial, road, tunnel, terminal and commercial areas were affected by vehicle exhaust.

  • PDF

ADDITIVE CATALYSTS FOR AN AUTOMOTIVE PHOTOCATALYST SYSTEM

  • Son, G.S.;Ko, S.H.;Lee, K.Y.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2000
  • As a promising catalyst reducing cold start emissions of automobiles, a photocatalyst systems has been studied. Since the photocatalyst is only activated by UV wavelength light, it needs no heat energy like a conventional TWC, therefore no light-off time. However, as a cold temperature catalyst to treat cold start emissions of a vehicle, previous studies on characteristic of photocatalyst have room for improvement in terms of performance and durability investigated from the viewpoints of performance and durability improvement. Eleven different coating samples were prepared with the combination of six kinds of additives and two kinds of photocatalyst materials. Then these samples were aged with a hydrothermal aging process. The performance of these samples was measured on a model gas apparatus with simulated exhaust gases. The durability was also analyzed with X-ray diffraction meter.

  • PDF

A study on the Interlock Circuit Abnormality of High Voltage System in HEV (하이브리드자동차 고전압 시스템 인터록 회로 이상 시 미치는 영향에 관한 연구)

  • Song, Rak Hyun;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.27-33
    • /
    • 2015
  • Recently, global warming has been accelerated due to air pollution and air pollutants are coming from the exhaust of the ICE vehicles, which are gradually increasing in number globally. That is why all the countries in the world are striving to reduce pollutant emissions of automobiles by strengthening regulations on air pollution. To comply with the regulations, the auto industry came up with hybrid vehicles, which have features of both ICE vehicles and electric vehicles. Hybrid vehicles show improvements in emissions, fuel efficiency, as well as functions as electric vehicles. This study aims to show possible troubles that occur at times of damages in high-voltage systems, and to suggest responsive measures.

Emission Analysis in Catalytic Converter Adopted Secondary Air Injection System for Cold Start Period (2차 공기 공급 시스템을 채택한 촉매 변환기 내 냉 시동 구간 배기가스 해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.46-52
    • /
    • 2010
  • In this paper, emission analysis during cold start period of CVS-75 mode in LPG vehicle was performed to find out proper operating conditions of SAI(Secondary Air Injection) system. In order to meet SULEV target, the simulated emission system had a SAI system as well as a MCC(Manifold Catalytic Converter) and a UCC(Under body Catalytic Converter). Using commercial 1-D code AMESIM, in which 7 step global surface chemical reactions of Langmuir-Hinshelwood type were adopted, transient emission analysis in the exhaust system during cold start period of CVS-75 mode were carried out to figure out the effects of flow rate, duration of supply air on HC, CO, NO emission.