• Title/Summary/Keyword: vehicle dynamics data

Search Result 175, Processing Time 0.024 seconds

A NUMERICAL STUDY FOR IMPROVING PERFORMANCE ON PAINT DRYING SYSTEM OF A VEHICLE (차량 도장 건조 성능 향상을 위한 수치해석 연구)

  • Lee, Seung-Jae;Choi, Jong-Rak;Hur, Nahm-Keon;Kim, Hee-Soo
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2011
  • In this study, three-dimensional transient numerical simulations were carried out for a paint drying system of vehicle. The vehicle on assembly line passes through the drying system consisting of hot and cool air blow region. For the moving motion of the vehicle, moving of inlet boundary condition and MRF technique are used. The transient distribution of temperature and velocity in the drying system were predicted numerically. In order to validate the numerical results, transient distribution of the vehicle surface temperature was compared with experimental data, showing a good agreement. As a result of present study, optimal operating condition of the drying system are to be suggested.

Durability Analysis and Experiments of a Vehicle Component (차량 부품의 내구도 해석과 실험의 비교)

  • Park, Dong-Woon;Park, Su-Jin;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.28-34
    • /
    • 2007
  • In design stage of vehicles, the application of virtual durability analysis techniques enables us to cut down the necessary time and cost to carry out various physical experiments. In this study, computer simulations of vehicle suspensions were carried out with DADS program including component flexibility, and the durability analysis of vehicle components was executed with MSC/Fatigue program using the load history obtained from vehicle dynamic simulation. Driving test of a vehicle was also carried out to obtain precise input data for the durability analysis, and the results of virtual durability analysis were compared to those of experiments.

Preliminary design of a scaled railway vehicle simulator (상사기법을 이용한 차량시뮬레이터 기초 설계)

  • Kim, Hong-Chan;Kim, Jeung-Tae;Lee, Hi-Sung;Oh, Se-Been
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.951-956
    • /
    • 2008
  • The study is to develop a foundation design for a railway vehicle simulator using a scaled model. Although a scaled simulator is limited to manipulate the dynamics of a full-size railway vehicle, it has been known to have an advantage, since a scaled model could provide the fundamental dynamic behavior within a limited space of a laboratory facility and with a low operation cost while an experiment is conducted. This study is to propose a design strategy for a simulator so that a small scaled roller rig could be fabricated in a laboratory based on the design philosophy. The data obtained from the scale model is also experimentally investigated in conjunction with appropriate non-dimensional analysis so that the output results should be interpreted to the railway vehicle.

  • PDF

Development of a Dynamic Analysis Program for Tracked Vehicles (궤도차량을 위한 동특성 해석 프로그램 개발)

  • 최윤상;이영신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2002
  • A simulation program for vehicle dynamic analysis was developed. The Cartesisn coordinate system was used for translational motion and the Euler angle system was used for rotational motion. A three dimensional multi-wheeled vehicle model and equations of motion were derived. Also static equilibrium analysis was added for initial vehicle condition setting. The program user can describe the exact characteristics of suspension spring force and damping force in the user subroutine. A wheel-ground contact model which represents geometrical effect was developed. Two cases of simulation for 16 D.O.F. vehicle model were conducted to validate the developed program by comparing the simulation results with the experimental data.

Preliminary Design and Development Framework of Railway Vehicle Simulator for Engineering Evaluation Analysis

  • Kim, Hong-Chan;Kim, Jeung-Tae
    • International Journal of Railway
    • /
    • v.4 no.1
    • /
    • pp.5-11
    • /
    • 2011
  • The purpose of the present study is to develop conceptual design of a railway vehicle simulator based on a scaled model. Although the scaled simulator is limited in its ability to manipulate the full dynamics of a full-size railway vehicle, it has been known to have an advantage in that it could provide means of testing the fundamental dynamic behavior within a limited laboratory space and at low operation cost. The present study proposes a design strategy for a simulator so that a small scaled roller rig could be fabricated and operated in laboratory setting based on the design philosophy. The data obtained from experimental testing using a scale model can be used to verify and interpret the dynamic performance of full-scale railway vehicle by applying appropriate non-dimensional analysis.

Modeling of Stabilizer for Vehicle Dynamic Analysis (차량동역학 해석에서 스태필라이저의 모델링)

  • Cho, Byoung-Kwan;Song, Sung-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.30-35
    • /
    • 1996
  • Tires, bushings and stabilizers are the most difficult elements in vehicle modeling for dynamic analyses. Many studies were performed for tire modeling and the primitive data of bushing elements can be obtained from the suspension designer, but there are few things for stabilizer. This paper presents simulation results for the 3 kinds of stabilizer model with the multi-body dynamic analysis program ADAMS. Each simulation result was compared with the vehicle test result, and the stabilizer model was proposed to analyze the vehicle behaviors precisely.

  • PDF

A Study on Vibration Reduction Timing Selection in the Mobile Pointing System (기동장비용 지향구조물의 진동 감소 상태선정 연구)

  • Yoo, Jin-Ho;Lee, Dong-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.112-119
    • /
    • 2007
  • In order to predict vibration trends occurred during vehicle drive, acceleration data was processed by using data processing algorithm with moving average and Hilbert transform. Specific mode constants of acceleration were obtained under various disturbance. Vehicle velocity, road condition, property of pointing structure were considered as factors which make change of vibration trend in vehicle dynamics. Results of signal processing were compared and analysed. Advanced performance of the timing selection algorithm from this study was verified by using simple equipment comparing with the deflection measurement laser system(Muzzle Reference System).

EFFECT OF THE FLEXIBILITY OF AUTOMOTIVE SUSPENSION COMPONENTS IN MULTIBODY DYNAMICS SIMULATIONS

  • Lim, J.Y.;Kang, W.J.;Kim, D.S.;Kim, G.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.745-752
    • /
    • 2007
  • In this study, the effects of flexible bodies in vehicle suspension components were investigated to enhance the accuracy of multibody dynamic simulation results. Front and rear suspension components were investigated. Subframes, a stabilizer bar, a tie rod, a front lower control arm, a front knuckle, and front struts were selected. Reverse engineering techniques were used to construct a virtual vehicle model. Hard points and inertia data of the components were measured with surface scanning equipment. The mechanical characteristics of bushings and dampers were obtained from experiments. Reaction forces calculated from the multibody dynamics simulations were compared with test results at the ball joint of the lower control arm in both time-history and range-pair counting plots. Simulation results showed that the flexibility of the strut component had considerable influence on the lateral reaction force. Among the suspension components, the flexibility of the sub-frame, steering knuckle and upper strut resulted in better correlations with test results while the other flexible bodies could be neglected.

Identification of Four-DOF Dynamics of a RIB using Sea Trial Tests (I) - Sea Trial Test, Resistance and Propulsion Model (해상시험 결과를 이용한 RIB의 4자유도 동력학 식별 (I) - 해상시험, 저항·추진 모델)

  • Yoon, Hyeon-Kyu;Yun, Kun-Hang;Park, In-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • RIB(Rigid Inflatable Boat) is widely used for coastal transportation in the commercial use and for ISR(Intelligence, Surveillance, Reconnaissance) in the military use. Since RIB is around 10 meters in length and over 30 knots in speed, its motion characteristics in waves is quite different from a large scale ship. When it turns, large roll occurs and heeling direction is opposite to the large ship's case. Currently, many countries are developing USV(Unmanned Surface Vehicle) of which type is RIB. In order to develop high performance autopilot and way point controller, it is very important to identify RIB's motion characteristics. In this paper, sea trial test results of a 7-meter RIB such as speed, turning, zig-zag, and way point control tests were represented and its resistance and propulsion model was identified by using sea trial data and Savitsky's formula. In addition, the state space model which will be used in the identification of the four-degree-of-freedom dynamics in the next step was formulated and the identification procedure was proposed.

Development of Tire Lateral Force Monitoring Systems Using Nonlinear Observers (비선형 관측기를 이용한 차량의 타이어 횡력 감지시스템 개발)

  • 김준영;허건수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.169-176
    • /
    • 2000
  • Longitudinal and lateral forces acting on tires are known to be closely related to the tract-ability braking characteristics handling stability and maneuverability of ground vehicles. In thie paper in order to develop tire force monitoring systems a monitoring model is proposed utilizing not only the vehicle dynamics but also the roll motion. Based on the monitoring model three monitoring systems are developed to estimate the tire force acting on each tire. Two monitoring systems are designed utilizing the conventional estimation techniques such as SMO(Sliding Mode Observer) and EKF(Extended Kalman Filter). An additional monitoring system is designed based on a new SKFMEC(Scaled Kalman Filter with Model Error Compensator) technique which is developed to improve the performance of EKF method. Tire force estimation performance of the three monitoring systems is compared in the Matlab simulations where true tire force data is generated from a 14 DOF vehicle model with the combined-slip Magic Formula tire model. The built in our Lab. simulation results show that the SKFMEC method gives the best performance when the driving and road conditions are perturbed.

  • PDF