• 제목/요약/키워드: vehicle door design

검색결과 55건 처리시간 0.024초

차량도어 조립공차 예측기술 개발 (An Advanced Prediction Technology of Assembly Tolerance for Vehicle Door)

  • 정남용;조진형;오현승;이세재
    • 산업경영시스템학회지
    • /
    • 제41권4호
    • /
    • pp.91-100
    • /
    • 2018
  • The setting of values on door hinge mounting compensation for door assembly tolerance is a constant quality issue in vehicle production. Generally, heuristic methods are used in satisfying appropriate door gap and level difference, flushness to improve quality. However, these methods are influenced by the engineer's skills and working environment and result an increasement of development costs. In order to solve these problems, the system which suggests hinge mounting compensation value using CAE (Computer Aided Engineering) analysis is proposed in this study. A structural analysis model was constructed to predict the door gap and level difference, flushness through CAE based on CAD (Computer Aided Design) data. The deformations of 6-degrees of freedom which can occur in real vehicle doors was considered using a stiffness model which utilize an analysis model. The analysis model was verified using 3D scanning of real vehicle door hinge deformation. Then, system model which applying the structural analysis model suggested the final adjustment amount of the hinge mounting to obtain the target door gap and the level difference by inputting the measured value. The proposed system was validated using the simulation and showed a reliability in vehicle hinge mounting compensation process. This study suggests the possibility of using the CAE analysis for setting values of hinge mounting compensation in actual vehicle production.

자주포용 탄약 운반 궤도차량 도어힌지 용접부 구조강도 해석 (Structural Weld Strength Analysis on Door Hinge of Field Artillery Ammunition Support Vehicle)

  • 강현제;김병호;김병현;서재현
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.58-65
    • /
    • 2016
  • This study analyzed the structural weld strength for a door hinge for a field artillery ammunition support vehicle. In order to determine the optimal conditions, we measured the modal analysis and analyzed the leg length of a rear door hinge. From these methods, we acquired the vibration frequency of normal mode and the optimal welding leg length conditions. It was possible to obtain a structural stability for a rear door hinge of the field artillery ammunition support vehicle. In the future, this should be used as a reference source for the weld strength analysis of high vibration and high weight structures for another welding system design.

굽힘 강도 향상을 위한 프레스 도어 임팩트 빔의 단면 설계 (The Section Design of Press Door Impact Beam for Improving Bending Strength)

  • 조경래;강성종
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.74-81
    • /
    • 2017
  • The door impact beam of the side-impacted vehicle plays a key role in securing occupant safety by preventing intrusion from the impacting vehicle. Despite the low production cost, the press door impact beam has been adopted sparingly because of the strength inferiority. In this study, the design technologies of the press beam aimed at improving bending strength were investigated. First, the effect of the section shape and size was examined. Next, thickness and material strength were increased. Also, the TRB beam application was simulated by varying combined thickness. Some TRB beams with reduced weight exhibited bending strength over the strength of the pipe beam. Then, the beam with a closed center section also showed remarkably enhanced maximum bending strength.

저상 및 고상 철도 승강장 겸용 승강문 제어유닛과 열차모니터링시스템의 인터페이스 설계 (A Design on the TMS-DCU Interface for Low and High Level Railway Platforms)

  • 김철수;김재문
    • 전기학회논문지
    • /
    • 제63권2호
    • /
    • pp.325-330
    • /
    • 2014
  • In order to operate trains both mainline railroad platform and metropolitan subway line platform, it is necessary to develop the door step equipment of the rolling stock regardless of low(500mm, mainline) and high level platforms(1,135mm, metropolitan subway line) because of the requisite door safety system. In this study, TMS-DCU interface is studied for low and high level railway platforms. As a result, Design circuit of TMS(Train Management System)-DCU(Door Control Unit) interface is suitable for telescopic sliding type doorstep unit to minimize damage to the carbody underframe of railway vehicles.

KEY TECHNIQUES IN DEVELOPMENT OF VEHICLE GLASS DROP DESIGN SYSTEM

  • Liu, B.;Jin, C.N;Hu, P.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.327-335
    • /
    • 2007
  • A new optimization scheme and some key techniques are proposed in the development of a vehicle glass drop design software system. The key issues of the design system are how to regenerate the glass surface and make the vehicle glass drop down along the glass channels. To resolve these issues, a parameterized model was created at first, in which the optimizing method and Knowledge Fusion techniques were adopted the optimized process was then written into the glass drop design system by coding with C language and UGS/Open Application Programme Interface functions etc. Therefore, the designer or engineer can simulate the process of glass dropping along the channels to assess the potential interference between glass and door accessory by using this software system. All of the testing results demonstrate the validity of the optimizing scheme, and the parametric design software effectively solves the key issues on development of the door accessory package.

고장력강을 이용한 자동차 경량 도어 개발 프로세스 (The Process Development of Automotive Light-Weighting Door using High Strength Steel)

  • 장동환
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.55-62
    • /
    • 2017
  • This paper proposes the process to develop a light-weighting automotive door assembly using high strength steel with low cost penalty. In recent years, the automotive industry is making an effort to reduce the vehicle weight. In this study, inner panels for automotive front door using thinner sheets and quenchable boron steel were designed to reduce the weight of conventional one. In order to evaluate the stiffness properties for the proposed door design, the several static tests were conducted using the finite element method. Based on the simulation results, geometry modifications of the inner panels were taken into account in terms of thickness changes and cost saving. Furthermore, a prototype based on the proposed design has been made, and then static stiffness test carried out. From the results, the proposed door is proved compatible and weight reduction of 11.8% was achieved. It could be a reference process for automotive industry to develop the similar products.

객실 출입문의 Anti-Drag 시스템 적용 (Application of Anti-Drag System in the Passenger Door)

  • 정화식;박경봉;박재홍
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1348-1356
    • /
    • 2011
  • The passenger side entrance door is very important system that make boarding and getting off the passengers. During the passenger door closing, there is some obstacles between door panels, passenger door can detect the obstacle and obstacle is remained between door panels, vehicle can no possible to move. But passenger door can not detect the obstacle if obstacle is too thin such as clothes and belts. So, anti-drag system is applied the to make detect these thin obstacle. Therefore, we survey the characteristic, function and its activation scenario of anti-drag system and present the passenger door system that latest applied anti-drag system that can be a help to make design.

  • PDF

티어심 파손 강도를 고려한 동승석 에어백 도어시스템의 최적 설계 (Optimal Design of Passenger Airbag Door System Considering the Tearseam Failure Strength)

  • 최환영;공병석;박동규
    • 자동차안전학회지
    • /
    • 제13권3호
    • /
    • pp.60-68
    • /
    • 2021
  • Invisible passenger airbag door system of hard panel types must be designed with a weakened area such that the side airbag will deploy through the instrument panel as like intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test. If the advanced airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of invisible passenger airbag (IPAB) door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. It was introduced the 'Operating Window' idea from quality engineering to design the hard panel types of IPAB door system applied to the advanced airbag for optimal deployment and head impact performance. Zigzab airbag folding and 'n' type PAB mounting bracket were selected.

핫스탬핑에 의한 자동차 도어 임팩트빔의 개발 (Construction of Vehicle Door Impact Beam Using Hot Stamping Technology)

  • 이현우;황정복;김선웅;김원혁;유승조;임현우;염영진
    • 대한기계학회논문집A
    • /
    • 제34권6호
    • /
    • pp.797-803
    • /
    • 2010
  • 자동차의 측면 충돌시 승객을 보호하고자 박판재를 이용하여 자동차의 도어 임팩트빔을 핫스탬핑공법을 이용하여 개발하였다. 핫스탬핑 기술은 차량의 차체 강성을 증가시킬 뿐만 아니라 차체 중량 및 부품 수 축소로 인한 공정의 감소도 가능하게 한다. 핫스탬핑 시편을 제작하고, 기계적 물성시험을 수행하여 물성 데이터를 확보하였다. 핫스탬핑 임팩트빔의 성형해석및 구조해석을 이용한 최적 설계를 수행하여 기존 파이프형태의 임팩트빔보다 강도는 102% 향상되고, 중량은 34% 감소된 핫스탬핑 임팩트빔을 개발하였다.