• Title/Summary/Keyword: vehicle detection system

Search Result 788, Processing Time 0.031 seconds

Comparison of the Methodologies for Calculating Expressway Space Mean Speed Using Vehicular Trajectory Information from a Radar Detector (레이더검지기의 차량 궤적 정보를 이용한 고속도로 공간평균속도 산출방법 비교)

  • Han, Eum;Kim, Sang Beom;Rho, Jeong Hyun;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.34-44
    • /
    • 2016
  • This study was initiated to evaluate the performance of methodologies to estimate the space mean speed(SMS) using the time mean speed(TMS) which was collected from the vehicle detection system(VDS) in expressways. To this end, the methodologies presented in prior studies were firstly summarized. It is very hard to achieve exact SMSs and TMSs due to mechanical and communication errors in the field. Thus, a microscopic traffic simulation model was utilized to evaluated the performance. As a result, the harmonic mean and volume-distance weighted harmonic mean were close to the SMS in the case in which the TMSs of individual vehicles were used. However, when the 30-second-interval aggregated TMS were used, the volume-distance weighted harmonic mean was outstanding. In this study, a radar detector was installed in the Joongbu expressway to collect the SMS. The trajectory of individual vehicles collected from the detector were used to calculate the SMS, which was compared with the estimates using other methodologies selected in this study. As a result, the volume-distance weighted mean was turned out to be close to the SMS. However, as the congestion becomes severe. the deviation between the two speed becomes bigger.

The Development of Freeway Travel-Time Estimation and Prediction Models Using Neural Networks (신경망을 이용한 고속도로 여행시간 추정 및 예측모형 개발)

  • 김남선;이승환;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.47-59
    • /
    • 2000
  • The purpose of this study is to develop travel-time estimation model using neural networks and prediction model using neural networks and kalman-filtering technique. The data used in this study are travel speed collected from inductive loop vehicle detection systems(VDS) and travel time collected from the toll collection system (TCS) between Seoul and Osan toll Plaza on the Seoul-Pusan Expressway. Two models, one for travel-time estimation and the other for travel-time Prediction were developed. Application cases of each model were divided into two cases, so-called, a single-region and a multiple-region. because of the different characteristics of travel behavior shown on each region. For the evaluation of the travel time estimation and Prediction models, two Parameters. i.e. mode and mean were compared using five-minute interval data sets. The test results show that mode was superior to mean in representing the relationship between speed and travel time. It is, however shown that mean value gives better results in case of insufficient data. It should be noted that the estimation and the Prediction of travel times based on the VDS data have been improved by using neural networks, because the waiting time at exit toll gates can be included for the estimation of travel time based on the VDS data by considering differences between VDS and TCS travel time Patterns in the models. In conclusion, the results show that the developed models decrease estimation and prediction errors. As a result of comparing the developed model with the existing model using the observed data, the equality coefficients of the developed model was average 88% and the existing model was average 68%. Thus, the developed model was improved minimum 17% and maximum 23% rather then existing model .

  • PDF

A Method of Detecting the Aggressive Driving of Elderly Driver (노인 운전자의 공격적인 운전 상태 검출 기법)

  • Koh, Dong-Woo;Kang, Hang-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.537-542
    • /
    • 2017
  • Aggressive driving is a major cause of car accidents. Previous studies have mainly analyzed young driver's aggressive driving tendency, yet they were only done through pure clustering or classification technique of machine learning. However, since elderly people have different driving habits due to their fragile physical conditions, it is necessary to develop a new method such as enhancing the characteristics of driving data to properly analyze aggressive driving of elderly drivers. In this study, acceleration data collected from a smartphone of a driving vehicle is analyzed by a newly proposed ECA(Enhanced Clustering method for Acceleration data) technique, coupled with a conventional clustering technique (K-means Clustering, Expectation-maximization algorithm). ECA selects high-intensity data among the data of the cluster group detected through K-means and EM in all of the subjects' data and models the characteristic data through the scaled value. Using this method, the aggressive driving data of all youth and elderly experiment participants were collected, unlike the pure clustering method. We further found that the K-means clustering has higher detection efficiency than EM method. Also, the results of K-means clustering demonstrate that a young driver has a driving strength 1.29 times higher than that of an elderly driver. In conclusion, the proposed method of our research is able to detect aggressive driving maneuvers from data of the elderly having low operating intensity. The proposed method is able to construct a customized safe driving system for the elderly driver. In the future, it will be possible to detect abnormal driving conditions and to use the collected data for early warning to drivers.

Short-Term Prediction of Vehicle Speed on Main City Roads using the k-Nearest Neighbor Algorithm (k-Nearest Neighbor 알고리즘을 이용한 도심 내 주요 도로 구간의 교통속도 단기 예측 방법)

  • Rasyidi, Mohammad Arif;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.121-131
    • /
    • 2014
  • Traffic speed is an important measure in transportation. It can be employed for various purposes, including traffic congestion detection, travel time estimation, and road design. Consequently, accurate speed prediction is essential in the development of intelligent transportation systems. In this paper, we present an analysis and speed prediction of a certain road section in Busan, South Korea. In previous works, only historical data of the target link are used for prediction. Here, we extract features from real traffic data by considering the neighboring links. After obtaining the candidate features, linear regression, model tree, and k-nearest neighbor (k-NN) are employed for both feature selection and speed prediction. The experiment results show that k-NN outperforms model tree and linear regression for the given dataset. Compared to the other predictors, k-NN significantly reduces the error measures that we use, including mean absolute percentage error (MAPE) and root mean square error (RMSE).

Improvement in flow and noise performances of small axial-flow fan for automotive fine dust sensor (차량용 미세먼지 센서용 소형 축류팬의 유동과 소음 성능 개선)

  • Younguk Song;Seo-Yoon Ryu;Cheolung Cheong;Inhiug Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.7-15
    • /
    • 2023
  • Recently, as interest in air quality in vehicles increases, the use of fine dust detection sensors for air quality measurement is becoming common. An axial-flow fan is inserted in the fine dust sensor installed in the air conditioning system in the vehicle to prevent dust from sinking directly on the sensor. When the sensor operates, the flow noise caused by the rotation of the axial-flow fan acts as a major noise source of the fine dust sensor. flow noise is recognized as one of the product competitiveness of fine dust sensors. In this study, the noise was gradually reduced at the same flow rate by improving the flow performance of the small axial flow fan. First, a virtual fan performance tester consisting of about 20 million grids was developed to analyze the aerodynamic performance of the target small axial-flow fan. In addition, the flow field was simulated by using compressible Large Eddy Simulation for direct computation of flow noise as well as high-accurate prediction of flow rate. The validity of numerical method are confirmed through the comparison of predicted results with experimental ones. After the effects of pitch angle on flow performance were analyzed using the verified numerical method, the pitch angle was determined to maximize the flow rate. It was found that the flow rate was increased by 8.1 % and noise was reduced by 0.8 dBA when the axial-flow fan with the optimum pitch angle was used.

Methodology for Developing a Predictive Model for Highway Traffic Information Using LSTM (LSTM을 활용한 고속도로 교통정보 예측 모델 개발 방법론)

  • Yoseph Lee;Hyoung-suk Jin;Yejin Kim;Sung-ho Park;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.1-18
    • /
    • 2023
  • With the recent developments in big data and deep learning, a variety of traffic information is collected widely and used for traffic operations. In particular, long short-term memory (LSTM) is used in the field of traffic information prediction with time series characteristics. Since trends, seasons, and cycles differ due to the nature of time series data input for an LSTM, a trial-and-error method based on characteristics of the data is essential for prediction models based on time series data in order to find hyperparameters. If a methodology is established to find suitable hyperparameters, it is possible to reduce the time spent in constructing high-accuracy models. Therefore, in this study, a traffic information prediction model is developed based on highway vehicle detection system (VDS) data and LSTM, and an impact assessment is conducted through changes in the LSTM evaluation indicators for each hyperparameter. In addition, a methodology for finding hyperparameters suitable for predicting highway traffic information in the transportation field is presented.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

A Study on Metaverse Construction Based on 3D Spatial Information of Convergence Sensors using Unreal Engine 5 (언리얼 엔진 5를 활용한 융복합센서의 3D 공간정보기반 메타버스 구축 연구)

  • Oh, Seong-Jong;Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.171-187
    • /
    • 2022
  • Recently, the demand and development for non-face-to-face services are rapidly progressing due to the pandemic caused by the COVID-19, and attention is focused on the metaverse at the center. Entering the era of the 4th industrial revolution, Metaverse, which means a world beyond virtual and reality, combines various sensing technologies and 3D reconstruction technologies to provide various information and services to users easily and quickly. In particular, due to the miniaturization and economic increase of convergence sensors such as unmanned aerial vehicle(UAV) capable of high-resolution imaging and high-precision LiDAR(Light Detection and Ranging) sensors, research on digital-Twin is actively underway to create and simulate real-life twins. In addition, Game engines in the field of computer graphics are developing into metaverse engines by expanding strong 3D graphics reconstuction and simulation based on dynamic operations. This study constructed a mirror-world type metaverse that reflects real-world coordinate-based reality using Unreal Engine 5, a recently announced metaverse engine, with accurate 3D spatial information data of convergence sensors based on unmanned aerial system(UAS) and LiDAR. and then, spatial information contents and simulations for users were produced based on various public data to verify the accuracy of reconstruction, and through this, it was possible to confirm the construction of a more realistic and highly utilizable metaverse. In addition, when constructing a metaverse that users can intuitively and easily access through the unreal engine, various contents utilization and effectiveness could be confirmed through coordinate-based 3D spatial information with high reproducibility.