• Title/Summary/Keyword: vehicle detection algorithm

Search Result 503, Processing Time 0.025 seconds

YOLOv4 Grid Cell Shift Algorithm for Detecting the Vehicle at Parking Lot (노상 주차 차량 탐지를 위한 YOLOv4 그리드 셀 조정 알고리즘)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.31-40
    • /
    • 2022
  • YOLOv4 can be used for detecting parking vehicles in order to check a vehicle in out-door parking space. YOLOv4 has 9 anchor boxes in each of 13x13 grid cells for detecting a bounding box of object. Because anchor boxes are allocated based on each cell, there can be existed small observational error for detecting real objects due to the distance between neighboring cells. In this paper, we proposed YOLOv4 grid cell shift algorithm for improving the out-door parking vehicle detection accuracy. In order to get more chance for trying to object detection by reducing the errors between anchor boxes and real objects, grid cells over image can be shifted to vertical, horizontal or diagonal directions after YOLOv4 basic detection process. The experimental results show that a combined algorithm of a custom trained YOLOv4 and a cell shift algorithm has 96.6% detection accuracy compare to 94.6% of a custom trained YOLOv4 only for out door parking vehicle images.

Vehicle Detection Using Edge Analysis and AdaBoost Algorithm (에지 분석과 에이다부스트 알고리즘을 이용한 차량검출)

  • Song, Gwang-Yul;Lee, Ki-Yong;Lee, Joon-Woong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • This paper proposes an algorithm capable of detecting vehicles in front or in rear using a monocular camera installed in a vehicle. The vehicle detection has been regarded as an important part of intelligent vehicle technologies. The proposed algorithm is mainly composed of two parts: 1)hypothesis generation of vehicles, and 2)hypothesis verification. The hypotheses of vehicles are generated by the analysis of vertical and horizontal edges and the detection of symmetry axis. The hypothesis verification, which determines vehicles among hypotheses, is done by the AdaBoost algorithm. The proposed algorithm is proven to be effective through experiments performed on various images captured on the roads.

Signal Processing Algorithm of FMCW RADAR using DSP (DSP를 이용한 FMCW 레이다 신호처리 알고리즘)

  • 한성칠;박상진;강성민;구경헌
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.425-428
    • /
    • 2001
  • In this paper, FMCW radar signal processing technique for the vehicle detection system are studied. And FMCW radar sensor is used as a equipment for vehicle detection. To test the performance of developed algorithm, the evaluation of the algorithm is done by simulation for signal processing technique of vehicle detection system. RADAR signal of a driving vehicle is generated by using the Matlab. Distance and velocity of vehicles are calculated with developed a1gorithm. Also the signal processing procedure is done for the virtual data with FM-AM converted noise.

  • PDF

Multi-label Lane Detection Algorithm for Autonomous Vehicle Using Deep Learning (자율주행 차량을 위한 멀티 레이블 차선 검출 딥러닝 알고리즘)

  • Chae Song Park;Kyong Su Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2024
  • This paper presents a multi-label lane detection method for autonomous vehicles based on deep learning. The proposed algorithm can detect two types of lanes: center lane and normal lane. The algorithm uses a convolution neural network with an encoder-decoder architecture to extract features from input images and produce a multi-label heatmap for predicting lane's label. This architecture has the potential to detect more diverse types of lanes in that it can add the number of labels by extending the heatmap's dimension. The proposed algorithm was tested on an OpenLane dataset and achieved 85 Frames Per Second (FPS) in end to-end inference time. The results demonstrate the usability and computational efficiency of the proposed algorithm for the lane detection in autonomous vehicles.

New Vehicle Verification Scheme for Blind Spot Area Based on Imaging Sensor System

  • Hong, Gwang-Soo;Lee, Jong-Hyeok;Lee, Young-Woon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Ubiquitous computing is a novel paradigm that is rapidly gaining in the scenario of wireless communications and telecommunications for realizing smart world. As rapid development of sensor technology, smart sensor system becomes more popular in automobile or vehicle. In this study, a new vehicle detection mechanism in real-time for blind spot area is proposed based on imaging sensors. To determine the position of other vehicles on the road is important for operation of driver assistance systems (DASs) to increase driving safety. As the result, blind spot detection of vehicles is addressed using an automobile detection algorithm for blind spots. The proposed vehicle verification utilizes the height and angle of a rear-looking vehicle mounted camera. Candidate vehicle information is extracted using adaptive shadow detection based on brightness values of an image of a vehicle area. The vehicle is verified using a training set with Haar-like features of candidate vehicles. Using these processes, moving vehicles can be detected in blind spots. The detection ratio of true vehicles was 91.1% in blind spots based on various experimental results.

A vehicle detection and tracking algorithm for supervision of illegal parking (불법 주정차 차량 단속을 위한 차량 검지 및 추적 기법)

  • Kim, Seung-Kyun;Kim, Hyo-Kak;Zhang, Dongni;Park, Sang-Hee;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.232-240
    • /
    • 2009
  • This paper presents a robust vehicle detection and tracking algorithm for supervision of illegal parking. The proposed algorithm is composed of four parts. First, a vehicle detection algorithm is proposed using the improved codebook object detection algorithm to segment moving vehicles from the input sequence. Second, a preprocessing technique using the geometric characteristics of vehicles is employed to exclude non-vehicle objects. Then, the detected vehicles are tracked by an object tracker which incorporates histogram tracking method with Kalman filter. To make the tracking results more accurate, histogram tracking results are used as measurement data for Kalman filter. Finally, Real Stop Counter (RSC) is introduced for trustworthy and accurate performance of the stopped vehicle detection. Experimental results show that the proposed algorithm can track multiple vehicles simultaneously and detect stopped vehicles successfully in the complicated street environment.

  • PDF

A Vehicle Detection and Tracking Algorithm Using Local Features of The Vehicle in Tunnel (차량의 부분 특징을 이용한 터널 내에서의 차량 검출 및 추적 알고리즘)

  • Kim, Hyun-Tae;Kim, Gyu-Young;Do, Jin-Kyu;Park, Jang Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1179-1186
    • /
    • 2013
  • In this paper, an efficient vehicle detection and tracking algorithm for detection incident in tunnel is proposed. The proposed algorithm consists of three steps. The first one is a step for background estimates, low computational complexity and memory consumption Running Gaussian Average (RGA) is used. The second step is vehicle detection step, Adaboost algorithm is applied to this step. In order to reduce false detection from a relatively remote location of the vehicles, local features according to height of vehicles are used to detect vehicles. If the local features of an object are more than the threshold value, the object is classified as a vehicle. The last step is a vehicle tracking step, the Kalman filter is applied to track moving objects. Through computer simulations, the proposed algorithm was found that useful to detect and track vehicles in the tunnel.

Fast Lamp Pairing-based Vehicle Detection Robust to Atypical and Turn Signal Lamps at Night

  • Jeong, Kyeong Min;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.269-275
    • /
    • 2017
  • Automatic vehicle detection is a very important function for autonomous vehicles. Conventional vehicle detection approaches are based on visible-light images obtained from cameras mounted on a vehicle in the daytime. However, unlike daytime, a visible-light image is generally dark at night, and the contrast is low, which makes it difficult to recognize a vehicle. As a feature point that can be used even in the low light conditions of nighttime, the rear lamp is virtually unique. However, conventional rear lamp-based detection methods seldom cope with atypical lamps, such as LED lamps, or flashing turn signals. In this paper, we detect atypical lamps by blurring the lamp area with a low pass filter (LPF) to make out the lamp shape. We also propose to detect flickering of the turn signal lamp in a manner such that the lamp area is vertically projected, and the maximum difference of two paired lamps is examined. Experimental results show that the proposed algorithm has a higher F-measure value of 0.24 than the conventional lamp pairing-based detection methods, on average. In addition, the proposed algorithm shows a fast processing time of 6.4 ms per frame, which verifies real-time performance of the proposed algorithm.

Application of the fault detection filter to detect the dynamic faults of a two-motor driven electric vehicle system (Detection Filter를 적용한 two-motor구동방식 전기자동차의 고장감지에 관한 연구)

  • 김병기;장태규;박정우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.341-344
    • /
    • 1997
  • This paper presents a dynamics failure detection algorithm developed for the two-motor-driven electric vehicle system. The algorithm is based on the application of the fault detection filter. The fault detection includes the identification of sudden pressure drops of the two rear tires in driving axis and dynamics faults of the two inverter-motor-paired actuators An E.V. dynamics simulator is developed, which includes the modeling of the E.V. dynamics as well as the driving dynamics. The simulator, which allows the generation of various fault situations, is utilized in the verification of the developed fault detection algorithm. The results of the simulations are also presented.

  • PDF

Laser Scanner based Static Obstacle Detection Algorithm for Vehicle Localization on Lane Lost Section (차선 유실구간 측위를 위한 레이저 스캐너 기반 고정 장애물 탐지 알고리즘 개발)

  • Seo, Hotae;Park, Sungyoul;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.24-30
    • /
    • 2017
  • This paper presents the development of laser scanner based static obstacle detection algorithm for vehicle localization on lane lost section. On urban autonomous driving, vehicle localization is based on lane information, GPS and digital map is required to ensure. However, in actual urban roads, the lane data may not come in due to traffic jams, intersections, weather conditions, faint lanes and so on. For lane lost section, lane based localization is limited or impossible. The proposed algorithm is designed to determine the lane existence by using reliability of front vision data and can be utilized on lane lost section. For the localization, the laser scanner is used to distinguish the static object through estimation and fusion process based on the speed information on radar data. Then, the laser scanner data are clustered to determine if the object is a static obstacle such as a fence, pole, curb and traffic light. The road boundary is extracted and localization is performed to determine the location of the ego vehicle by comparing with digital map by detection algorithm. It is shown that the localization using the proposed algorithm can contribute effectively to safe autonomous driving.