• Title/Summary/Keyword: vehicle detection

Search Result 1,330, Processing Time 0.027 seconds

Sequence Based Anomaly Detection System for Unmanned Aerial Vehicle (시퀀스 유사도 기반 무인 비행체 이상 탐지 시스템)

  • Seo, Kang Uk;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • In this paper, we propose an anomaly detection system (ADS) to detect anomalies of the in-vehicle network for unmanned aerial vehicle (UAV). The proposed ADS detects the anomalies by measuring the similarity of status messages sequences periodically sent by the UAV to the ground control system. We defined three types of malicious message injection attacks that can be performed on the in-vehicle network of UAV and simulated those attack techniques in the Pixhawk4 quadcopter. The proposed ADS can detect abnormal sequences with accuracy of higher than 96%.

Improved Metal Object Detection Circuits for Wireless Charging System of Electric Vehicles

  • Sunhee Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2209-2221
    • /
    • 2023
  • As the supply of electric vehicles increases, research on wireless charging methods for convenience has been increasing. Because the electric vehicle wireless transmission device is installed on the ground and the electric vehicle battery is installed on the floor of the vehicle, the transmission and reception antennas are approximately 15-30 cm away, and thus strong magnetic fields are exposed during wireless charging. When a metallic foreign object is placed in the magnetic field area, an eddy current is induced to the metallic foreign object, and heat is generated, creating danger of fire and burns. Therefore, this study proposes a method to detect metallic foreign objects in the magnetic field area of a wireless electric vehicle charging system. An active detection-only coil array was used, and an LC resonance circuit was constructed for the frequency of the supply power signal. When a metallic foreign object is inserted into the charging zone, the characteristics of the resonance circuit are broken, and the magnitude and phase of the voltage signal at both ends of the capacitor are changed. It was confirmed that the proposed method has about 1.5 times more change than the method of comparing the voltage magnitude at one node.

Autonomous Driving System for Advanced Safety Vehicle (고안전도 차량을 위한 자율주행 시스템)

  • Shin, Young-Geun;Jeon, Hyun-Chee;Choi, Kwang-Mo;Park, Sang-Sung;Jang, Dong-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.30-39
    • /
    • 2007
  • This paper is concerned with development of system to detect an obstructive vehicle which is an essential prerequisite for autonomous driving system of ASV(Advanced Safety Vehicle). First, the boundary of driving lanes is detected by a Kalman filter through the front image obtained by a CCD camera. Then, lanes are recognized by regression analysis of the detected boundary. Second, parameters of road curvature within the detected lane are used as input in error-BP algorithm to recognize the driving direction. Finally, an obstructive vehicle that enters into the detection region can be detected through setting detection fields of the front and lateral side. The experimental results showed that the proposed system has high accuracy more than 90% in the recognition rate of driving direction and the detection rate of an obstructive vehicle.

Development of a Real Time Video Image Processing System for Vehicle Tracking (실시간 영상처리를 이용한 개별차량 추적시스템 개발)

  • Oh, Ju-Taek;Min, Joon-Young
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.19-31
    • /
    • 2008
  • Video image processing systems(VIPS) offer numerous benefits to transportation models and applications, due to their ability to monitor traffic in real time. VIPS based on wide-area detection, i.e., multi-lane surveillance algorithm provide traffic parameters with single camera such as flow and velocity, as well as occupancy and density. However, most current commercial VIPS utilize a tripwire detection algorithm that examines image intensity changes in the detection regions to indicate vehicle presence and passage, i.e., they do not identify individual vehicles as unique targets. If VIPS are developed to track individual vehicles and thus trace vehicle trajectories, many existing transportation models will benefit from more detailed information of individual vehicles. Furthermore, additional information obtained from the vehicle trajectories will improve incident detection by identifying lane change maneuvers and acceleration/deceleration patterns. The objective of this research was to relate traffic safety to VIPS tracking and this paper has developed a computer vision system of monitoring individual vehicle trajectories based on image processing, and offer the detailed information, for example, volumes, speed, and occupancy rate as well as traffic information via tripwire image detectors. Also the developed system has been verified by comparing with commercial VIP detectors.

  • PDF

Improved Environment Recognition Algorithms for Autonomous Vehicle Control (자율주행 제어를 위한 향상된 주변환경 인식 알고리즘)

  • Bae, Inhwan;Kim, Yeounghoo;Kim, Taekyung;Oh, Minho;Ju, Hyunsu;Kim, Seulki;Shin, Gwanjun;Yoon, Sunjae;Lee, Chaejin;Lim, Yongseob;Choi, Gyeungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

Detection of Preceding Vehicles Based on a Multistage Combination of Edge Features and Horizontal Symmetry (에지특징의 단계적 조합과 수평대칭성에 기반한 선행차량검출)

  • Song, Gwang-Yul;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.679-688
    • /
    • 2008
  • This paper presents an algorithm capable of detecting leading vehicles using a forward-looking camera. In fact, the accurate measurements of the contact locations of vehicles with road surface are prerequisites for the intelligent vehicle technologies based on a monocular vision. Relying on multistage processing of relevant edge features to the hypothesis generation of a vehicle, the proposed algorithm creates candidate positions being the left and right boundaries of vehicles, and searches for pairs to be vehicle boundaries from the potential positions by evaluating horizontal symmetry. The proposed algorithm is proven to be successful by experiments performed on images acquired by a moving vehicle.

Vehicle Detection for Adaptive Head-Lamp Control of Night Vision System (적응형 헤드 램프 컨트롤을 위한 야간 차량 인식)

  • Kim, Hyun-Koo;Jung, Ho-Youl;Park, Ju H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, in order to effectively extract spotlight of interest, a pre-signal-processing process based on camera lens filter and labeling method is applied on road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process use light tracking method and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with visible light mono-camera and tested it in urban and rural roads. Through the test, classification performances are above 89% of precision rate and 94% of recall rate evaluated on real-time environment.

Recognition of Car Manufacturers using Faster R-CNN and Perspective Transformation

  • Ansari, Israfil;Lee, Yeunghak;Jeong, Yunju;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.888-896
    • /
    • 2018
  • In this paper, we report detection and recognition of vehicle logo from images captured from street CCTV. Image data includes both the front and rear view of the vehicles. The proposed method is a two-step process which combines image preprocessing and faster region-based convolutional neural network (R-CNN) for logo recognition. Without preprocessing, faster R-CNN accuracy is high only if the image quality is good. The proposed system is focusing on street CCTV camera where image quality is different from a front facing camera. Using perspective transformation the top view images are transformed into front view images. In this system, the detection and accuracy are much higher as compared to the existing algorithm. As a result of the experiment, on day data the detection and recognition rate is improved by 2% and night data, detection rate improved by 14%.

A Study on the Effective Scanning Trajectory using Manipulator for Underground Object Detection (매니퓰레이터를 이용한 지하 매설물 탐지의 효율적 탐지경로에 관한 연구)

  • Lee, Myung-Chun;Shin, Ho-Cheol;Yoon, Jong-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • This paper shows an effective scanning trajectory for a mine detection device that is one of the mission equipments of unmanned ground vehicle. The mine detection device is composed of a mine-detection sensor, and a 4 DOF manipulator enabling sensor position control. There are three modes that manage the mine detection device: passive, semi-automatic, and automatic. The automatic mode is used the most. This paper suggests a scanning method that makes shape of 8. This method prevents missing target area and enhances scanning speed when the mine detection device scans the ground surface in automatic mode. The suggested method is verified by simulations and experiments.

Vehicle Detection in Dense Area Using UAV Aerial Images (무인 항공기를 이용한 밀집영역 자동차 탐지)

  • Seo, Chang-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.693-698
    • /
    • 2018
  • This paper proposes a vehicle detection method for parking areas using unmanned aerial vehicles (UAVs) and using YOLOv2, which is a recent, known, fast, object-detection real-time algorithm. The YOLOv2 convolutional network algorithm can calculate the probability of each class in an entire image with a one-pass evaluation, and can also predict the location of bounding boxes. It has the advantage of very fast, easy, and optimized-at-detection performance, because the object detection process has a single network. The sliding windows methods and region-based convolutional neural network series detection algorithms use a lot of region proposals and take too much calculation time for each class. So these algorithms have a disadvantage in real-time applications. This research uses the YOLOv2 algorithm to overcome the disadvantage that previous algorithms have in real-time processing problems. Using Darknet, OpenCV, and the Compute Unified Device Architecture as open sources for object detection. a deep learning server is used for the learning and detecting process with each car. In the experiment results, the algorithm could detect cars in a dense area using UAVs, and reduced overhead for object detection. It could be applied in real time.