• Title/Summary/Keyword: vehicle defect

Search Result 97, Processing Time 0.023 seconds

Development of Automated Welding System for Construction: Focused on Robotic Arm Operation for Varying Weave Patterns

  • Doyun Lee;Guang-Yu Nie;Aman Ahmed;Kevin Han
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.2
    • /
    • pp.115-124
    • /
    • 2022
  • Welding is a significant part of the construction industry. Since most high-rise building construction structures rely on a robust metal frame welded together, welding defect can damage welded structures and is critical to safety and quality. Despite its importance and heavy usage in construction, the labor shortage of welders has been a continuous challenge to the construction industry. To deal with the labor shortage, the ultimate goal of this study is to design and develop an automated robotic welding system composed of a welding machine, unmanned ground vehicle (UGV), robotic arm, and visual sensors. This paper proposes and focuses on automated weaving using the robotic arm. For automated welding operation, a microcontroller is used to control the switch and is added to a welding torch by physically modifying the hardware. Varying weave patterns are mathematically programmed. The automated weaving is tested using a brush pen and a ballpoint pen to clearly see the patterns and detect any changes in vertical forces by the arm during weaving. The results show that the weave patterns have sufficiently high consistency and precision to be used in the actual welding. Lastly, actual welding was performed, and the results are presented.

Recent Progress in Dielectric Materials for MLCC Application (MLCC용 유전체 소재의 연구개발 동향)

  • Seo, Intae;Kang, Hyung-Won;Han, Seung Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • With the recent increase in demand for electronic devices, multi-layer ceramic capacitors (MLCCs) have become the most important core component. In particular, the next-generation MLCC with extremely high reliability is required for the 4th industrial revolution and electric vehicle applications. Therefore, it is necessary to develop dielectric ceramic materials with high dielectric properties and reliability. During the decades, electrical properties of BaTiO3 based dielectric ceramics, which have been widely used in MLCC industrial field, have been improved by microstructure and defect chemistry control. However, electrical properties of BaTiO3 have reached their limits, and new types of dielectric materials have been widely studied. Based on these backgrounds, this report presents the recent development trends of BaTiO3-based dielectric materials for the next-generation MLCCs, and suggests promising candidates to replace BaTiO3 ceramics.

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She;J.P. Song
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.357-370
    • /
    • 2024
  • Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.

The Results of Treatment for Motor Vehicle-related Crushing Injuries of Foot in Children (교통사고에 의한 소아 족부 압궤손상에 대한 치료결과)

  • Hahn, Soo-Bong;Kim, Hong-Kyun
    • Archives of Reconstructive Microsurgery
    • /
    • v.16 no.2
    • /
    • pp.113-118
    • /
    • 2007
  • Purpose: The purpose of this work was to describe the results of treatment for motor vehiclerelated crushing injuries among children and adolescents under sixteen years in Korea. Materials and Methods: A retrospective analysis was conducted of data from children who were under sixteen year and injured foot by motor vehicles. Cases were documented 1) age at the time of injury, 2) injured site, 3) the area of accident, 4) the kind of vehicle, 5) associated injuries, 6) methods of treatment for soft tissue reconstruction and 7) complications. The relationships between the area of accident and associated injuries, and the kind of vehicle and associated injuries were analyzed using Chi-square test and Fisher exact test. Results: There were 97 children who were 15 year and younger. The mean age was 7.4 years, and 65% were boys. The left foot was more dominant side of injury (57%). Seasonal variation was seen with the number of injuries peaking during the summer (43%, p<0.05). Among the vehicles, 78.3% were the large vehicles (bus, truck or van). The where of accident was more frequent at an alley or less than two lanes of traffic. But, the relationships between the place of accident and associated injury or the kind of vehicles and associated injury were not statistically significant. The associated injury were fracture or dislocation (23 cases, 35.9%), injury of tendon (21 cases, 32.8%). There were amputation or disarticulation of foot in 8 cases (8.2%) and post-traumatic deformities such as flatfoot, hindfoot varus or valus deformities by tendon injury in 7 cases (7.2%). Conclusion: More than 50% of crushing or degloving injuries of child's foot by traffic accidents happened in boys between 5 to 9 years old. The associated injury was unrelated with size of vehicles or accident place at the time of accident. But, even though foot injury happened in an alley or one lane by small vehicles, child who hurt feet by car need thorough investigation about associated injury. If a surgeon keep in mind and treat child to associated injury necessarily, can minimize complication. Microsurgical reconstruction for soft tissue defect was prior to other methods.

  • PDF

A study on measurement and compensation of automobile door gap using optical triangulation algorithm (광 삼각법 측정 알고리즘을 이용한 자동차 도어 간격 측정 및 보정에 관한 연구)

  • Kang, Dong-Sung;Lee, Jeong-woo;Ko, Kang-Ho;Kim, Tae-Min;Park, Kyu-Bag;Park, Jung Rae;Kim, Ji-Hun;Choi, Doo-Sun;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • In general, auto parts production assembly line is assembled and produced by automatic mounting by an automated robot. In such a production site, quality problems such as misalignment of parts (doors, trunks, roofs, etc.) to be assembled with the vehicle body or collision between assembly robots and components are often caused. In order to solve such a problem, the quality of parts is manually inspected by using mechanical jig devices outside the automated production line. Automotive inspection technology is the most commonly used field of vision, which includes surface inspection such as mounting hole spacing and defect detection, body panel dents and bends. It is used for guiding, providing location information to the robot controller to adjust the robot's path to improve process productivity and manufacturing flexibility. The most difficult weighing and measuring technology is to calibrate the surface analysis and position and characteristics between parts by storing images of the part to be measured that enters the camera's field of view mounted on the side or top of the part. The problem of the machine vision device applied to the automobile production line is that the lighting conditions inside the factory are severely changed due to various weather changes such as morning-evening, rainy days and sunny days through the exterior window of the assembly production plant. In addition, since the material of the vehicle body parts is a steel sheet, the reflection of light is very severe, which causes a problem in that the quality of the captured image is greatly changed even with a small light change. In this study, the distance between the car body and the door part and the door are acquired by the measuring device combining the laser slit light source and the LED pattern light source. The result is transferred to the joint robot for assembling parts at the optimum position between parts, and the assembly is done at the optimal position by changing the angle and step.

Development of LiDAR-Based MRM Algorithm for LKS System (LKS 시스템을 위한 라이다 기반 MRM 알고리즘 개발)

  • Son, Weon Il;Oh, Tae Young;Park, Kihong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.174-192
    • /
    • 2021
  • The LIDAR sensor, which provides higher cognitive performance than cameras and radar, is difficult to apply to ADAS or autonomous driving because of its high price. On the other hand, as the price is decreasing rapidly, expectations are rising to improve existing autonomous driving functions by taking advantage of the LIDAR sensor. In level 3 autonomous vehicles, when a dangerous situation in the cognitive module occurs due to a sensor defect or sensor limit, the driver must take control of the vehicle for manual driving. If the driver does not respond to the request, the system must automatically kick in and implement a minimum risk maneuver to maintain the risk within a tolerable level. In this study, based on this background, a LIDAR-based LKS MRM algorithm was developed for the case when the normal operation of LKS was not possible due to troubles in the cognitive system. From point cloud data collected by LIDAR, the algorithm generates the trajectory of the vehicle in front through object clustering and converts it to the target waypoints of its own. Hence, if the camera-based LKS is not operating normally, LIDAR-based path tracking control is performed as MRM. The HAZOP method was used to identify the risk sources in the LKS cognitive systems. B, and based on this, test scenarios were derived and used in the validation process by simulation. The simulation results indicated that the LIDAR-based LKS MRM algorithm of this study prevents lane departure in dangerous situations caused by various problems or difficulties in the LKS cognitive systems and could prevent possible traffic accidents.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.

Blunt Transection of the Entire Anterolateral Abdominal Wall Musculature Following Seatbelt-Related Injury

  • Kim, Hohyun;Kim, Jae Hun;Kim, Gil Hwan;Sun, Hyun-Woo;Park, Chan Ik;Park, Sung Jin;Lee, Chan Kyu;Kim, Suk
    • Journal of Trauma and Injury
    • /
    • v.33 no.2
    • /
    • pp.128-133
    • /
    • 2020
  • Traumatic abdominal wall hernias (TAWHs) are uncommon and the incidence of this, which is rarely encountered in clinical practice, has been estimated at 1%. Furthermore, blunt transection of the entire abdominal wall musculature caused by seatbelt is a very rare complication. We report a case of adult with a complete disruption of the entire anterolateral abdominal wall muscle following the seatbelt injury. A 32-year-old male was wearing a seat belt in a high speed motor vehicle collision. Abdominal computed tomography (CT) scan revealed the complete disruption of bilateral abdominal wall musculatures including TAWH without visceral injury. However, injuries of small bowel and sigmoid colon were observed in the intra-operative field. The patient underwent the repair by primary closure of the defect with absorbable monofilament sutures. This case suggests that especially in TAWH patients, even if a CT scan is normal, clinicians should keep the possibility of bowel injury in mind, and choose a treatment based on the clinical findings.

Analysis of Traffic Accident Reduction Effect When Introducing Motorcycle Safety Inspection (이륜자동차 안전검사제도 도입 시 교통사고절감효과 분석)

  • KOO, Jahun;JANG, Jinyoung;CHOO, Sang Ho
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.25-36
    • /
    • 2017
  • The purpose of this study is to analyze traffic accident reduction effect of the introduction of motorcycle safety inspection. To analyze the effect of motorcycle inspection, we first estimate the number of defective motorcycles, and calculate the probability of accident occurrences caused by the defect using four year traffic accident data. Finally, we estimate the number of reduced accidents due to the introduction of the inspection and the total reduced accident cost. In this study, we analyzed three scenarios. It is analyzed that when the safety inspection system is applied to all motorcycles, 642 cases of traffic accidents and 325 million won per year of traffic accident costs are reduced. It is approximately 0.1% of 2014 total traffic accident cost of 26.5725 trillion won per year. It suggests that the cost of traffic accidents and traffic accidents due to vehicle factors are reduced when the safety inspection system is introduced.

The effects of Atractylodes japonica Koidz. on type 2 diabetic rats (창출이 제 2형 당뇨병 흰쥐에 미치는 영향)

  • Lee, Dae Hoon;Han, Jae Min;Yang, Woong Mo
    • The Journal of Korean Medicine
    • /
    • v.36 no.1
    • /
    • pp.75-85
    • /
    • 2015
  • Objectives: Type 2 diabetes mellitus is a metabolic disease characterized by insulin resistance and high blood glucose level from progressive insulin secretory defect. The rhizome of Atractylodes japonica Koidz. (AJ) has been used for treatment of retention of water in oriental medicine. The aim of this study is to examine the effects of AJ on type 2 diabetes rats. Methods: Type 2 diabetes was induced by 60% high fat diet and low dose streptozotocin. Rats were divided into 4 groups (n = 6); Nor (normal control group), Con (diabetic group treated with vehicle), Met (diabetic group treated with 200 mg/kg metformin) and AJ (diabetic group treated with 100 mg/kg AJ). The body weights and food intakes were measured during the treatment period. After 4 weeks treatment, blood glucose level, HOMA-IR, and protein expressions of IRS-1, p-IRS-1, PPAR-${\gamma}$, and GLUT4 were measured, and histopathological examination of beta cell was performed. Results: Compared with the control group, blood glucose level and HOMA-IR were reduced in rats treated with AJ. Impaired beta cells in pancreas of rats were recovered and phosphorylation of IRS-1 was increased in rats treated with AJ. And also, protein expressions of PPAR-${\gamma}$ and GLUT4 were increased by treatment of AJ. Conclusions: The results suggest that Atractylodes japonica Koidz. may have anti-diabetic effect on type 2 diabetic rats through regulation of blood glucose level and insulin resistance. Therefore Atractylodes japonica Koidz. may have positive effects on patients with type 2 diabetes.