• Title/Summary/Keyword: vehicle classification method

Search Result 174, Processing Time 0.03 seconds

A Study On The Improvement Of Vehicle Plate Recognition (차량 번호판 인식 효율 향상을 위한 연구)

  • Kong, Yong-Hae;Kwon, Chun-Ki;Kim, Myung-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1947-1954
    • /
    • 2009
  • Camera-captured car plate images contain much variation and noise and the character images in a plate are typically very small. We attempted to improve the plate identification efficiency suitable for this undesirable condition. We experimented various image preprocessing and feature extracting methods and the very effective features that can compensate one feature's limitation is determined through extensive experiments. Finally two very effective features that can complement the limitations of each other feature(classifier) are determined and the efficiency is proved by recognition experiments. This approach is very necessary when handling plate character images which are typically small, various, and noisy. Individual classification result, confidence factor, region name relation and feedback verification are comprehensively considered to enhance the overall recognition efficiency. The efficiency of our method is verified by a recognition experiment using real car plate images taken from traffic roads.

A Review of Routing Plan for Unmanned Aerial Vehicle : Focused on In-Country Researches (국내 무인항공기의 경로계획 연구)

  • Kim, Jinwoo;Kim, Jinwook;Chae, Junjae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.212-225
    • /
    • 2015
  • UAV (Unmanned Aerial Vehicle), the pilotless plane or drone, draws researchers' attention at these days for its extended use to various area. The research was initiated for military use of the UAV, but the area of applicable field is extended to surveillance, communication, and even delivery for commercial use. As increasing the interest in UAV, the needs of research for operating the flying object which is not directly visible when it conducts a certain mission to remote place is obviously grown as much as developing high performance pilotless plane is required. One of the project supported by government is related to the use of UAV for logistics fields and controlling UAV to deliver the certain items to isolated or not-easy-to-access place is one of the important issues. At the initial stage of the project, the previous researches for controlling UAV need to be organized to understand current state of art in local researches. Thus, this study is one of the steps to develop the unmanned system for using in military or commercial. Specifically, we focused on reviewing the approaches of controlling UAV from origination to destination in previous in-country researches because the delivery involves the routing planning and the efficient and effective routing plan is critical to success to delivery mission using UAV. This routing plan includes the method to avoid the obstacles and reach the final destination without a crash. This research also present the classification and categorization of the papers and it could guide the researchers, who conduct researches and explore in comparable fields, to catch the current address of the research.

A Path-Volume Simulation Method to Select Arterial Section of Road Network (경로 교통량 시뮬레이션 기법을 이용한 간선구간 설정 방법론 연구)

  • 황준문;조중래;손영태
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.5
    • /
    • pp.85-97
    • /
    • 2001
  • In this study, the purpose behind this research is to propose index to be used for classification of functional the urban streets and to select the feasible length of special management link by the index. This special management link help decision makers found a transportation policy. In order to perform functional classification, index such as average traveled distance, link VKT and VKT per length-lane are use at the study. Average traveled distance index is average traveled distance divided by length of Path k and VKT per length-lane is trip volume characteristic considering lanes and length of Path k. Special management links on which major part of the vehicle are selected with using Path-VKT which represents how many long-distance touring vehicles are on the arterial road. The selection of special management links are performed with network composed of 14 paths (arterial roads) in seoul The total distance of special management links resulted from the above analysis is 141km(35.0% of the whole paths length) and total VKT of the special management links is 4,152,475 VKT(45.2% of the whole paths VKT)

  • PDF

Structural design of Optimized Interval Type-2 FCM Based RBFNN : Focused on Modeling and Pattern Classifier (최적화된 Interval Type-2 FCM based RBFNN 구조 설계 : 모델링과 패턴분류기를 중심으로)

  • Kim, Eun-Hu;Song, Chan-Seok;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.692-700
    • /
    • 2017
  • In this paper, we propose the structural design of Interval Type-2 FCM based RBFNN. Proposed model consists of three modules such as condition, conclusion and inference parts. In the condition part, Interval Type-2 FCM clustering which is extended from FCM clustering is used. In the conclusion part, the parameter coefficients of the consequence part are estimated through LSE(Least Square Estimation) and WLSE(Weighted Least Square Estimation). In the inference part, final model outputs are acquired by fuzzy inference method from linear combination of both polynomial and activation level obtained through Interval Type-2 FCM and acquired activation level through Interval Type-2 FCM. Additionally, The several parameters for the proposed model are identified by using differential evolution. Final model outputs obtained through benchmark data are shown and also compared with other already studied models' performance. The proposed algorithm is performed by using Iris and Vehicle data for pattern classification. For the validation of regression problem modeling performance, modeling experiments are carried out by using MPG and Boston Housing data.

A Study on the Urban Air Mobility(UAM) Operation Pilot Qualification System

  • Kim, Su-Ro;Cho, Young-Jin;Jeon, Seung-Mok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.201-208
    • /
    • 2022
  • As around the world, ground and underground transportation capacity is reaching its limit, centering on urban areas. As urban traffic becomes congested, time and cost are astronomical, and environmental destruction caused by urban pollution is becoming increasingly serious. As a way to solve this problem, the means of flying over the air are in the spotlight as the next generation of future transportation, and the concept of urban air mobility (UAM, Urban Air Mobility) is defined as systematic planning. The development of an electric-powered vertical take-off (eVTOL) aircraft that obtains electric power through a battery using a personal aerial vehicle (PAV) as a means of transportation has accelerated. As the aircraft development of new technology aircraft in the evtol method is actively carried out, the need to prepare systems such as aircraft certification standards, pilot qualification systems, and qualification management is emerging. The Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA), which lead international standards, announced new special technical conditions and temporary regulations SCVTOL-01, respectively. However, the pilot qualification system for operating the uam aircraft has not yet been clearly announced. Therefore, this paper analyzes the recently announced FAA regulations and EASA regulations to identify differences and directions in perspectives on UAMs and study the existing vertical take-off and landing aircraft (VTOL) pilot qualification system to present directions for qualification classification.

Transfer Learning Models for Enhanced Prediction of Cracked Tires

  • Candra Zonyfar;Taek Lee;Jung-Been Lee;Jeong-Dong Kim
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.13-20
    • /
    • 2023
  • Regularly inspecting vehicle tires' condition is imperative for driving safety and comfort. Poorly maintained tires can pose fatal risks, leading to accidents. Unfortunately, manual tire visual inspections are often considered no less laborious than employing an automatic tire inspection system. Nevertheless, an automated tire inspection method can significantly enhance driver compliance and awareness, encouraging routine checks. Therefore, there is an urgency for automated tire inspection solutions. Here, we focus on developing a deep learning (DL) model to predict cracked tires. The main idea of this study is to demonstrate the comparative analysis of DenseNet121, VGG-19 and EfficientNet Convolution Neural Network-based (CNN) Transfer Learning (TL) and suggest which model is more recommended for cracked tire classification tasks. To measure the model's effectiveness, we experimented using a publicly accessible dataset of 1028 images categorized into two classes. Our experimental results obtain good performance in terms of accuracy, with 0.9515. This shows that the model is reliable even though it works on a dataset of tire images which are characterized by homogeneous color intensity.

  • PDF

Optimization of Color Sorting Process of Shredded ELV Bumper using Reaction Surface Method (반응표면법을 이용한 폐자동차 범퍼 파쇄물의 색채선별공정 최적화 연구)

  • Lee, Hoon
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.23-30
    • /
    • 2019
  • An color sorting technique was introduced to recycle End-of-life automobile shredded bumpers. The color sorting is a innovate method of separating the differences in the color of materials which are difficult to separate in gravity and size classification by using a camera and an image process technique. Experiments were planned and optimal conditions were derived by applying BBD (Box-Behnken Design) in the reaction surface method. The effects of color sensitivity, feed rate and sample size were analyzed, and a second-order reaction model was obtained based on the analysis of regression and statistical methods and $R^2$ and p-value were 99.56% and < 0.001. Optimum recovery was 94.1% under the conditions of color sensitivity, feed rate and particle size of 32%, 200 kg/h, and 33 mm respectively. The recovery of actual experiment was 93.8%. The experimental data agreed well with the predicted value and confirmed that the model was appropriate.

A study on Decision Model of Disuse Status for the Commercial Vehicles Considering the Military Operating Environment

  • Lee, Jae-Ha;Moon, Ho-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.141-149
    • /
    • 2020
  • The proportion of commercial vehicles currently used by the private sector among the vehicles operated by the military is very high at 58% and plans to increase further in the future. As the proportion of commercial vehicles in the military has increased, it is also an important issue to determine whether to disuse of commercial vehicles. At present, the decision of disuse of commercial vehicles is subjectively judged by vehicle technical inspector using design life and vehicle usage information. However, the difference according to the military operation environment is not reflected and objective judgment criteria are not presented. The purpose of this study is to develop a model to determine the disuse status of commercial vehicles in consideration of military operating environment. The data used in the study were 1,746 commercial vehicles of three types: cars, vans and trucks. Using the information of the operating area, climate characteristic, vehicle condition the decision model of disuse status was constructed using the classification machine learning technique. The proposed decision model of disuse status has an average accuracy of about 97% and can be used in the field. Based on the results of the study, the policy suggestions were proposed in the short and long term to improve the performance of decision model of disuse status of commercial vehicles in the future and to establish a new data construction method within the logistics information system.

Detecting Vehicles That Are Illegally Driving on Road Shoulders Using Faster R-CNN (Faster R-CNN을 이용한 갓길 차로 위반 차량 검출)

  • Go, MyungJin;Park, Minju;Yeo, Jiho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.105-122
    • /
    • 2022
  • According to the statistics about the fatal crashes that have occurred on the expressways for the last 5 years, those who died on the shoulders of the road has been as 3 times high as the others who died on the expressways. It suggests that the crashes on the shoulders of the road should be fatal, and that it would be important to prevent the traffic crashes by cracking down on the vehicles intruding the shoulders of the road. Therefore, this study proposed a method to detect a vehicle that violates the shoulder lane by using the Faster R-CNN. The vehicle was detected based on the Faster R-CNN, and an additional reading module was configured to determine whether there was a shoulder violation. For experiments and evaluations, GTAV, a simulation game that can reproduce situations similar to the real world, was used. 1,800 images of training data and 800 evaluation data were processed and generated, and the performance according to the change of the threshold value was measured in ZFNet and VGG16. As a result, the detection rate of ZFNet was 99.2% based on Threshold 0.8 and VGG16 93.9% based on Threshold 0.7, and the average detection speed for each model was 0.0468 seconds for ZFNet and 0.16 seconds for VGG16, so the detection rate of ZFNet was about 7% higher. The speed was also confirmed to be about 3.4 times faster. These results show that even in a relatively uncomplicated network, it is possible to detect a vehicle that violates the shoulder lane at a high speed without pre-processing the input image. It suggests that this algorithm can be used to detect violations of designated lanes if sufficient training datasets based on actual video data are obtained.

Estimation Carbon Storage of Urban Street trees Using UAV Imagery and SfM Technique (UAV 영상과 SfM 기술을 이용한 가로수의 탄소저장량 추정)

  • Kim, Da-Seul;Lee, Dong-Kun;Heo, Han-Kyul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.1-14
    • /
    • 2019
  • Carbon storage is one of the regulating ecosystem services provided by urban street trees. It is important that evaluating the economic value of ecosystem services accurately. The carbon storage of street trees was calculated by measuring the morphological parameter on the field. As the method is labor-intensive and time-consuming for the macro-scale research, remote sensing has been more widely used. The airborne Light Detection And Ranging (LiDAR) is used in obtaining the point clouds data of a densely planted area and extracting individual trees for the carbon storage estimation. However, the LiDAR has limitations such as high cost and complicated operations. In addition, trees change over time they need to be frequently. Therefore, Structure from Motion (SfM) photogrammetry with unmanned Aerial Vehicle (UAV) is a more suitable method for obtaining point clouds data. In this paper, a UAV loaded with a digital camera was employed to take oblique aerial images for generating point cloud of street trees. We extracted the diameter of breast height (DBH) from generated point cloud data to calculate the carbon storage. We compared DBH calculated from UAV data and measured data from the field in the selected area. The calculated DBH was used to estimate the carbon storage of street trees in the study area using a regression model. The results demonstrate the feasibility and effectiveness of applying UAV imagery and SfM technique to the carbon storage estimation of street trees. The technique can contribute to efficiently building inventories of the carbon storage of street trees in urban areas.