• Title/Summary/Keyword: vegetation stress

Search Result 107, Processing Time 0.027 seconds

Slope Stability Analysis of New Gabion Wall System with Vegetation Base Materials for Stream Bank Stability and Rehabilitation (계안 복원을 위한 식생기반재 돌망태 옹벽의 계안 안정효과 분석)

  • Choi, Hyung Tae;Jeong, Yong-Ho;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.130-137
    • /
    • 2012
  • This study has conducted to develop new gabion wall systems with vegetation base materials for stream bank stability and rapid rehabilitation. Vegetation base materials are primarily compounded with fine soil, organic composts and peat moss as plant fibers, a water retainer and a soil improver. Normally gabion wall systems resist the lateral earth pressures or stream power by their own weight. Therefore, fill material must have suitable weight, compressive strength and durability to resist the loading, as well as the effects of water and weathering. In this project, 100 to 200-mm clean, hard stones are basically specified, and about 50-mm rubbles are also used. Test application of new gabion wall system carried out in the stream bank of a small stream in the Gwangreung experimental forest, belonging to Korea Forest Research Institute (KFRI) in December 16th, 2006. As a result of the analysis of hydraulic stability of new gabion wall system, gabion wall system has highest threshold shear stress when the gabion wall covered by vegetation. New gabion wall system is highly resistant to sliding and overturning because safety coefficients exceed 1.5. As a result of term of slope stability analysis of new gabion wall system by Bishop and Fellenius methods, stability of stream bank was highly increased after the construction of gabion wall. Therefore, new gabion wall system is effective to stabilize unstable stream bank.

A Spring Marine Algal Vegetation in the Muan, Jindo and Geomundo Coast, Western South Sea of Korea (한국 서남해역 무안, 진도와 거문도의 춘계 해조식생)

  • LIM, Su Yeon;KANG, Man-Gu;LEE, Chang Hyeok;KIM, Seong Ju;SHIN, Jong-Ahm
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.612-625
    • /
    • 2017
  • To grasp the algal vegetation using the occurred species number, biomass and dominant species, this study was performed in the subtidal zone of Muan-gun, in the intertidal zone of Jindo-gun and in the intertidal zone and subtidal zone of Geomundo, the south-eastern coast of Jeollanamdo, Korea in the spring 2014. The total occurred species was 140 ones including 10 chlorophytes(7.14%), 54 phaeophytes(38.57%) and 76 rhodophytes(54.29%); the biomass was $70,484g{\cdot}w{\cdot}w/m^2$ in total. The flora charateristic using R/P ratio, geographical distribution pattern of algae, at the Station 9-1(intertidal zone) in Geomundo was tropical; the flora at the Station 6 (Maengseong-ri, Sanjodo, Jindo-gun) and the Station 9-2(subtidal zone) in Geomundo were mixed; the others were arctic to temperate. The physiognomic types were also shown. Each species was classified into six functional-form groups, and two ecological state groups(ESG) were evaluated based on these groups. The coarsely branched-group of functional-form groups was 44% of total occurred species. The ESG II in all study sites was high, and this is maybe due to the environmental stress such as pollution and disturbance, etc.

Primary Succession on Talus Area at Mt. Kariwangsan, Korea (가리왕산 일대 돌서렁에서의 일차천이)

  • Lee, Kyu-Song;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.120-130
    • /
    • 1994
  • Stages of vegetation development on talus area were studied to examine temporal changes in species composition and vegetation structure, and to elucidate the mechanism of early patch formation. While ground coverage of lichens, which may form substrate for moss colonization and mitigate the heat-stress on rocks, decreased gradully, coverage of mosses increased slightly during primary succession. Ecological role of mossess related with water retention in community may be very important not only at pioneer stage but also at later stages because of little soil development on this talus area. Species diversity and species richness increased during the early stages of succession. Parthenocis년 tricuspidata and Sorbaria sorbifolia var. stellipa dominated in liana stage, Ulmus davidiana for. suberosa and Lindera obtusiloba in shrub stage, and Fraxinus rhynchophylla and Actinidia arguta in subtree stage, however, was composed of mixed forest of several tree species. U. davidiana for. suberosa, L. obtusiloba, Securinega suffruticosa and Rhus chinensis were relatively important woody species in early patch forming process. The results, however, suggested that early establishment on talus area might be strongly associated with chance for safe-site because both pioneer species and later species could take part in early patch forming process.

  • PDF

Performance Assessment of Three Turfgrass Species, in Three Different Soil Types, and their Responses to Water Deficit in Reinforced Cells, Growing in the Urban Environment

  • Ow, L.F;Ghosh, S.;Chin, S.W.
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.338-347
    • /
    • 2015
  • Reinforcement cells are used to aid grass growth and taken together, this serves to extend greenery beyond the conventional spaces of lawns, tree pits, gardens, and parks, and is advantageous to urban cities since space for greening is often limited. Drought has variable effects on plant life and the resilience of turf to drought resistance also varies with species. Changes in photosynthetic ability were more pronounced for media rather than grass species. The media of sand without organic matter was found to be least suited for drought resistance. Normalized difference vegetation index (NDVI) and digital image analysis (DIA) data were generally in favour of Zoysia species as oppose to A. compressus. In A. compressus, selective traits such as, a more extensive root system and lower specific leaf area (SLA) were not an underlying factor that assisted this grass with enhanced drought resistance. Generally, WUE was found to be strongly related to plant characterises such as overall biomass, photosynthetic features as well as the lushness indexes, and specific leaf area. This study found a strong relationship between WUE and a suite of plant characteristics. These traits should serve as useful selection criteria for species with the ability to resist water stress.

Numerical Simulation of Mean Flows and Turbulent Structures of Partly-Vegetated Open-Channel Flows using the Nonlinear k-ε Model (비선형 k-ε 모형을 이용한 부분 식생 개수로 흐름의 평균흐름 및 난류구조 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk;Kim, Taejoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.813-820
    • /
    • 2014
  • This study presents a numerical modeling of mean flow and turbulence structures of partly-vegetated open-channel flows. For this, Reynolds-averaged Navier-Stokes equations with vegetation drag terms are solved numerically using the non-linear k-${\varepsilon}$ model. The numerical model is applied to laboratory experiments of Nezu and Onitsuka (2001), and simulated results are compared with data from measurement and computations by Kang and Choi's (2006) Reynolds stress model. The simulation results indicate that the proposed numerical model simulates the mean flow well. Twin vortices are found to be generated at the interface between vegetated and non-vegetated zones, where turbulence intensity and Reynolds stress show their maximums. The model simulates the pattern of the Reynolds stress well but under-predicts the intensity of Reynolds stress slightly.

Cause-based Categorization of the Riparian Vegetative Recruitment and Corresponding Research Direction (하천식생 이입현상의 원인 별 유형화 및 연구 방향)

  • Woo, Hyoseop;Park, Moonhyeong
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.207-211
    • /
    • 2016
  • This study focuses on the categorization of the phenomenon of vegetative recruitment on riparian channels, so called, the phenomenon from "white river" to "green river", and proposes for the corresponding research direction. According to the literature review and research outputs obtained from the authors' previous research performed in Korea within a limited scope, the necessary and sufficient conditions for the recruitment and retrogression of riparian vegetation may be the mechanical disturbance (riverbed tractive stress), soil moisture (groundwater level, topography, composition of riverbed material, precipitation etc.), period of submergence, extreme weather, and nutrient inflow. In this study, two categories, one for the reduction in spring flood due to the change in spring precipitation pattern in unregulated rivers and the other for the increase in nutrient inflow into streams, both of which were partially proved, have been added in the categorization of the vegetative recruitment and retrogression on the riparian channels. In order to scientifically investigate further the phenomenon of the riparian vegetative recruitment and retrogression and develop the working riparian vegetative models, it is necessary to conduct a systematic nationwide survey on the "white to green" rivers, establishment of the categorization of the vegetation recruitment and retrogression based on the proof of those hypotheses and detailed categorization, development of the working mathematical models for the dynamic riparian vegetative recruitment and retrogression, and adaptive management for the river changes.

Evaluation of Photochemical Reflectance Index (PRI) Response to Soybean Drought stress under Climate Change Conditions (기후변화 조건에서 콩 한발스트레스에 대한 광화학 반사 지수 반응 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyeong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.261-268
    • /
    • 2019
  • Climate change and drought stress are having profound impacts on crop growth and development by altering crop physiological processes including photosynthetic activity. But finding a rapid, efficient, and non-destructive method for estimating environmental stress responses in the leaf and canopy is still a difficult issue for remote sensing research. We compared the relationships between photochemical reflectance index(PRI) and various optical and experimental indices on soybean drought stress under climate change conditions. Canopy photosynthesis trait, biomass change, chlorophyll fluorescence(Fv/Fm), stomatal conductance showed significant correlations with midday PRI value across the drought stress period under various climate conditions. In high temperature treatment, PRI were more sensitive to enhanced drought stress, demonstrating the negative effect of the high temperature on the drought stress. But high CO2 concentration alleviated the midday depression of both photosynthesis and PRI. Although air temperature and CO2 concentration could affect PRI interpretation and assessment of canopy radiation use efficiency(RUE), PRI was significantly correlated with canopy RUE both under climate change and drought stress conditions, indicating the applicability of PRI for tracking the drought stress responses in soybean. However, it is necessary to develop an integrated model for stress diagnosis using PRI at canopy level by minimizing the influence of physical and physiological factors on PRI and incorporating the effects of other vegetation indices.

Drought Hazard Assessment using MODIS-based Evaporative Stress Index (ESI) and ROC Analysis (MODIS 위성영상 기반 ESI와 ROC 분석을 이용한 가뭄위험평가)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Hong, Eun-Mi;Kim, Taegon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.51-61
    • /
    • 2020
  • Drought events are not clear when those start and end compared with other natural disasters. Because drought events have different timing and severity of damage depending on the region, various studies are being conducted using satellite images to identify regional drought occurrence differences. In this study, we investigated the applicability of drought assessment using the Evaporative Stress Index (ESI) based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images. The ESI is an indicator of agricultural drought that describes anomalies in actual and reference evapotranspiration (ET) ratios that are retrieved using remotely sensed inputs of Land Surface Temperature (LST) and Leaf Area Index (LAI). However, these approaches have a limited spatial resolution when mapping detailed vegetation stress caused by drought, and drought hazard in the actual crop cultivation areas due to the small crop cultivation in South Korea. For these reasons, the development of a drought index that provides detailed higher resolution ESI, a 500 m resolution image is essential to improve the country's drought monitoring capabilities. The newly calculated ESI was verified through the existing 5 km resolution ESI and historical records for drought impacts. This study evaluates the performance of the recently developed 500 m resolution ESI for severe and extreme drought events that occurred in South Korea in 2001, 2009, 2014, and 2017. As a result, the two ES Is showed high correlation and tendency using Receiver Operating Characteristics (ROC) analysis. In addition, it will provide the necessary information on the spatial resolution to evaluate regional drought hazard assessment and and the small-scale cultivation area across South Korea.

Determination of Shear Strength Modification Factors in Drilled Shaft (현장타설말뚝의 전단강도 조정계수 결정법)

  • Kim, Myung-Hak;Michael W. O'Neill
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.193-200
    • /
    • 1999
  • An experimental study is described in which a 305-mm-diameter instrumented drilled shaft was installed in a moderately expansive clay soil during the dry season and monitored over a period of about 18 months. The purpose of the study was In investigate the effects of seasonal moisture changes in the soil on the shear stresses imposed on the sides of the drilled shaft and movements of the shaft head. The soil in the vicinity of the test shaft was instrumented to measure suction and ground surface movement and the relation between suction, total stress and shear strength of the soil at the test site was determined through laboratory triaxial compression testing. Daily rainfall and temperatures were also monitored at the test site, the National Geotechnical Experimentation Site at the University of Houston, where control on surface grading and vegetation existed. Over the course of the study induced unit side shear values of up to 54 kPa were measured in the test shaft. A simple computational model was developed that related observed suction changes to unit side shear induced by the expansion of the soil through the use of the laboratory suction-total stress-shear strength relation.

  • PDF

Possibility for Early Detection on Crop Water Stress Using Plural Vegetation Indices (작물 가뭄스트레스 조기탐지 가능성 타진을 위한 서로 다른 종류의 식생지수 활용)

  • Moon, Hyun-Dong;Jo, Euni;Cho, Yuna;Kim, Hyunki;Kim, Bo-kyeong;Lee, Yuhyeon;Jeong, Hoejeong;Kwon, Dongwon;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1573-1579
    • /
    • 2022
  • The irrigation schedule system using early detection of crop water stress is required to maintain crop production and save water resource. However, because previous studies focused on the crop under stress dominant condition, the crop physiological properties, which can be measured by remote sensing technique, on early crop water stress condition are not well known. In this study, the canopy temperature, MERIS Terrestrial Chlorophyll Index (MTCI), and Chlorophyll/Carotenoid Index (CCI) are observed on the soybeans given the early water stress using thermal imaging camera and hyperspectral camera. The increased canopy temperature and decreased MTCI are consist with the previous studies which are for the crop of stress dominant-sign. However, the CCI was increased contrary to expectation because it may faster the reduction of carotenoid than chlorophyll in early stage. These behaviors will be useful to not only develop the irrigation system but also using the early detection of crop stress.