Browse > Article
http://dx.doi.org/10.7780/kjrs.2022.38.6.1.43

Possibility for Early Detection on Crop Water Stress Using Plural Vegetation Indices  

Moon, Hyun-Dong (Department of Applied Plant Science, Chonnam National University)
Jo, Euni (Department of Applied Plant Science, Chonnam National University)
Cho, Yuna (Department of Applied Plant Science, Chonnam National University)
Kim, Hyunki (Department of Applied Plant Science, Chonnam National University)
Kim, Bo-kyeong (Department of Applied Plant Science, Chonnam National University)
Lee, Yuhyeon (Department of Applied Plant Science, Chonnam National University)
Jeong, Hoejeong (Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration)
Kwon, Dongwon (Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration)
Cho, Jaeil (Department of Applied Plant Science, Chonnam National University)
Publication Information
Korean Journal of Remote Sensing / v.38, no.6_1, 2022 , pp. 1573-1579 More about this Journal
Abstract
The irrigation schedule system using early detection of crop water stress is required to maintain crop production and save water resource. However, because previous studies focused on the crop under stress dominant condition, the crop physiological properties, which can be measured by remote sensing technique, on early crop water stress condition are not well known. In this study, the canopy temperature, MERIS Terrestrial Chlorophyll Index (MTCI), and Chlorophyll/Carotenoid Index (CCI) are observed on the soybeans given the early water stress using thermal imaging camera and hyperspectral camera. The increased canopy temperature and decreased MTCI are consist with the previous studies which are for the crop of stress dominant-sign. However, the CCI was increased contrary to expectation because it may faster the reduction of carotenoid than chlorophyll in early stage. These behaviors will be useful to not only develop the irrigation system but also using the early detection of crop stress.
Keywords
Crop water stress; Canopy temperature; MTCI; CCI; Chlorophyll; Carotenoid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Dash, J., P.J. Curran, M.J. Tallis, G.M. Llewellyn, G. Taylor, and P. Snoeij, 2010. Validating the MERIS Terrestrial Chlorophyll Index (MTCI) with ground chlorophyll content data at MERIS spatial resolution, International Journal of Remote Sensing, 31(20): 5513-5532. https://doi.org/10.1080/01431160903376340   DOI
2 Jeong H., R.-D. Jeong, J.-H. Ryu, D. Oh, S. Choi, and J. Cho, 2019. Preliminary growth chamber experiments using thermal infrared image to detect crop disease, Korean Journal of Agricultural and Forest Meteorology, 21(2): 111-116 (in Korean with English abstract). https://doi.org/10.5532/KJAFM.2019.21.2.111   DOI
3 Wong, C.Y., P. D'Odorico, M.A. Arain, and I. Ensminger, 2020. Tracking the phenology of photosynthesis using carotenoid-sensitive and near-infrared reflectance vegetation indices in a temperate evergreen and mixed deciduous forest, New Phytologist, 226(6): 1682-1695. https://doi.org/10.1111/nph.16479   DOI
4 Sun, P., A. Grignetti, S. Liu, R. Casacchia, R. Salvatori, F. Pietrini, F. Loreto, and M. Centritto, 2008. Associated changes in physiological parameters and spectral reflectance indices in olive (Olea europaea L.) leaves in response to different levels of water stress, International Journal of Remote Sensing, 29(6): 1725-1743. https://doi.org/10.1080/01431160701373754   DOI
5 Liu, X., L. Shao, H. Sun, S. Chen, and X. Zhang, 2013. Responses of yield and water use efficiency to irrigation amount decided by pan evaporation for winter wheat, Agricultural Water Management, 129: 173-180. https://doi.org/10.1016/j.agwat.2013.08.002   DOI
6 Banerjee, K. and P. Krishnan, 2020. Normalized Sunlit Shaded Index (NSSI) for characterizing the moisture stress in wheat crop using classified thermal and visible images, Ecological Indicators, 110: 105947. https://doi.org/10.1016/j.ecolind.2019.105947   DOI
7 Berger, K., M. Machwitz, M. Kycko, S.C. Kefauver, S.V. Wittenberghe, M. Gerhards, J. Verrelst, C. Atzberger, C. Tol, A. Damm, U. Rascher, I. Herrmann, V.S. Paz, S. Fahrner, R. Pieruschka, E. Prikaziuk, M.L. Buchaillot, A. Halabuk, M. Celesti, G. Koren, E.T. Gormus, M. Rossini, M. Foerster, B. Siegmann, A. Abdelbaki, G. Tagliabue, T. Hank, R. Darvishzadeh, H. Aasen, M. Garcia, I. Pocas, S. Bandopadhyay, M. Sulis, E. Tomelleri, O. Rozenstein, L. Filchev, G. Stancile, and M. Schlerf, 2022. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review, Remote Sensing of Environment, 280: 113198. https://doi.org/10.1016/j.rse.2022.113198   DOI
8 Gamon, J.A., K.F. Huemmrich, C.Y. Wong, I. Ensminger, S. Garrity, D.Y. Hollinger, A. Noormets, and J. Penuelas, 2016. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers, Proceedings of the National Academy of Sciences, 113(46): 13087-13092. https://doi.org/10.1073/pnas.1606162113   DOI
9 Hanson, B., S. Orloff, and D. Peters, 2000. Monitoring soil moisture helps refine irrigation management, California Agriculture, 54(3): 38-42. https://doi.org/10.3733/ca.v054n03p38   DOI
10 Idso, S.B., R.D. Jackson, P.J. Pinter Jr., R.J. Reginato, and J.L. Hatfield, 1981. Normalizing the stress degree-day for environmental variability, Agricultural Meteorology, 24: 45-55. https://doi.org/10.1016/0002-1571(81)90032-7   DOI
11 Moeremans, B. and S. Dautrebande, 2000. Soil moisture evaluation by means of multi-temporal ERS SAR PRI images and interferometric coherence, Journal of Hydrology, 234(3-4): 162-169. https://doi.org/10.1016/S0022-1694(00)00251-1   DOI
12 Moran, M.S., 1994. Irrigation management in Arizona using satellites and airplanes, Irrigation Science, 15(1): 35-44. https://doi.org/10.1007/BF00187793   DOI
13 Sauer, T., P. Havlik, U.A. Schneider, E. Schmid, G. Kindermann, and M. Obersteiner, 2010. Agriculture and resource availability in a changing world: The role of irrigation, Water Resources Research, 46(6): 1-12. https://doi.org/10.1029/2009WR007729   DOI
14 Elliott, E., D. Deryng, C. Muller, K. Frieler, M. Konzmann, D. Gerten, M. Glotter, M. Florke, Y. Wada, N. Best, S. Eisner, B.M. Fekete, C. Folberth, I. Fostera, S.N. Gosling, I. Haddeland, N. Khabarov, F. Ludwig, Y. Masaki, S. Olin, C. Rosenzweig, A.C. Ruane, Y. Satoh, E. Schmid, T. Stacke, Q. Tang, and D. Wisser, 2013. Constraints and potentials of future irrigation water availability on agricultural production under climate change, Proceedings of the National Academy of Science, 111(9): 3239-3244. https://doi.org/10.1073/pnas.1222474110   DOI
15 Cerullo, G., D. Polli, G. Lanzani, S. De Silvestri, H. Hashimoto, and R.J. Cogdell, 2002. Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state, Science, 298(5602): 2395-2398. https://doi.org/10.1126/science.1074685   DOI
16 Dash, J. and P.J. Curran, 2007. Evaluation of the MERIS terrestrial chlorophyll index (MTCI), Advances in Space Research, 39(1): 100-104. https://doi.org/10.1016/j.asr.2006.02.034   DOI
17 de Lima, I.P., R.G. Jorge, and J.L.P. de Lima, 2021. Remote sensing monitoring of rice fields: Towards assessing water saving irrigation management practices, Frontiers in Remote Sensing, 2: 762093. https://doi.org/10.3389/frsen.2021.762093   DOI