• Title/Summary/Keyword: vegetation planting and seeding

Search Result 16, Processing Time 0.022 seconds

Studies on Partial Revegetation of Rock Cut-Slope by Direct Seeding of Woody Species Seeds (수목종자 직파에 의한 암반절개사면 부분녹화)

  • Hong, Sung-Gak;Kim, Jong-Jin;Lee, Duck-Soo;Lee, Ki-Cheol;Yoon, Teok-Seong
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.265-271
    • /
    • 1999
  • The direct seeding of seeds or the pellets of three native tree species (Pinus densiflora, Parthenocissus tricuspidata and Rhus chinensis) was tried on the rock cut-slope revegetation bed established by construction of mechanical excavation or erosion break with artificially enriched soil medium. The seed $pellet(1{\sim}2\;cubic\;cm)$ made by coating seeds(treated with proper previous pregermination treatments) with the mixture of peatmoss, clay, chemical absorbant(3.5:1.0:0.2, v/v) showed about twice better percent germination than the control seeds. The percent germination and the survival rate of the germinated seedlings were higher in the spring direct seeding than the summer or the fall. The soil medium containing the compost showed extremely low percent $germination(0{\sim}3%)$ which presumably attributed to the compost inducing damping-off disease. The survival rates were affected mainly by shading of natural herbaceous vegetation invading from outside to the revegetation bed. The planting of two year old container seedlings of P. densiflora and P. tricuspidata on August 2, 1998 was successful indicating that it could be an alternative revegetation method in case the summer direct seeding is unfavorable.

  • PDF

Development of Revegetation Method Using Forest Topsoils for Ecological Restoration of the Slopes(I) (산림표층토를 활용한 비탈면 생태복원녹화에 관한 연구(I))

  • Nam, Sang-Jun;Yeo, Hwan-Joo;Choi, Jae Yong;Kim, Namchoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.4
    • /
    • pp.110-119
    • /
    • 2004
  • This research was conducted to develop spraying cultivation method using forest topsoils in order to restore the disturbed slopes. In November the researcher collected a depth of 5 cm of topsoils from a well developed forest, after the fallen leaves were cleared. The essential results of the research are as follows: In the case of using the forest topsoils, during the early stages of planting, time is necessary for the desired vegetation to reach a similar state to the vegetation being restored. The best possible effect is obtained through a method utilizing forest topsoil(30%)+loam silt soil(70%)+seeding with grasses and native plants including trees, shrubs, and herbs. Several plants such as Pinus densiftora, Potentilla fragarioides, Miscanthus sinensis, Erigeron canadensis seemed to be naturally emerged from the topsoils From this experiment, it was recommended that environment potential within topsoil should be comprehended. Also, topsoil deposit and gathering methods should be experimented properly.

Progression of Restoration of Soil Physical Properties and Vegetation in Logging Roads - In Case of 9 Years Results after Construction of Logging Road - (벌채지내(伐採地內) 운재로(運材路)의 토양물리성(土壤物理性) 및 식생(植生)의 회복과정(回復過程) - 운재로(運材路) 개설(開設)이후 9년 경과의 경우 -)

  • Woo, Bo-Myeong;Kim, Kyung-Hoon;Park, Jae-Hyeon;Choi, Hyung-Tae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.1 no.1
    • /
    • pp.18-27
    • /
    • 1998
  • To investigate the restoration progression on soil physical properties and vegetation at the surface of logging road affected by timber harvesting operation. This study was carried out at logging roads constructed from 1989 to 1994 in Mt. Baekwoon, Kwangyang, Chollanam-do. Judging from the analysis of soil hardness, there were significant changes in the depth of soil between 5 and 10cm. Soil hardness was recovered from the compacted condition to the natural forest condition after 9 years passed. Soil macroporous ratio (pF2.7) of topsoil was higher than that of deep soil. Soil moisture retention of topsoil was more improved than that of deep soil. From the view of soil bulk density, the necessary time for recovering to the undisturbed condition of forest soil was about 10 years in the logging road left. Soil physical properties such as soil bulk density and porous ratio were recovered as time passed. Improved soil physical properties promoted the plant recovery on the logging road surface. The dominant species on the logging roads were Comus kousa, Prunus sargentii as overstory species, Rubus crataegifolius, Lespedeza bicolor as understory species, and Saussurea gracilis, Pteridium aquilinum var. latiusculum as herbaceous species. The plant recovery of bank-slopes was faster than that of cut-slopes and road surface. In progress of year, average plant coverage were 70 to 90% in cut- and bank-slopes and 30 to 60% on the logging road, surface which was elapsed 9 years after logging road construction. Therefore, additional planting and seeding work could be effective to the soil condition and vegetation restoration.

  • PDF

A Study of Characteristics of Seeding Plants through Improvements of Dredge Vegetation-Base -Focus on Site 14 in Nakdong-gang- (준설토 파종식물의 생육경향 및 관리방안 연구 -낙동강 14공구 중심으로-)

  • Kim, Nam Choon;Ann, Phil Gyun;Nam, Sang Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.1
    • /
    • pp.141-154
    • /
    • 2012
  • This study was launched to verify the effective composition of plant species and its management program most suited for the dredged soiled area near Nakdong River Site 14. The improvement methods of planting base and the composition of plants such as silver grass, reed, and some colonies in aesthetic effect were studied. To search the management methods to decrease the confining pressure risen from the burried seeds which would consequently harm the previously seeded plants, experimental construction process was measured on the site. The purpose of this experiment was to figure out which part of the improvement on the plant base has the most significant effect for the revegetation of infertile, dredged soil, to verify the easily seeded, developing plants among seeded plants, and finally, to find the restoration model using plants near the dredged soil around riverside. 8 seeded plants and 23 invaded species were appeared which among the emerged plants, development of Aster yomena MAKINO, Lotus corniculatus var. japonica Regel, Trifolium repens L, and Dianthus longicalyx Miq were proved to be brought up well. Difference risen from the seed composition were not noticeable until 150day since the germination was proceeded mainly by Aster yomena MAKINO. The experimental plot with dredging sand+organic fertilizer method of construction and dredging sand+soil conditioner method showed most development while the effect of the plot with only the soil base of dredging sand stayed low. Another important method for the management of infertile, dredged soil base would be the removal of disturbing species which the experiment showed the tied relationship between the removal of disturbing species and development of seeding plants. Although this study was carried out focused on the Nakdong River Project, the study suggests the general management program that the removal of disturbing species such as Humulus japonicus Sieboid & Zucc. and Pueraria lobata (Willd.) Ohwi in times around rainy season(60days after seedling) would be effective for the easy growth of revegetation plants.

The Change of Riverside Vegetation by Construction of Ecological Stream in Suwoncheon, Gyeonggi Province (경기도 수원천 생태하천 복원사업 이후 식생변화 연구)

  • Choe, Il-Hong;Han, Bong-Ho;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • This study aims to analyze the change in vegetation for 10 years after the construction, targeting Suwoncheon, the first domestic ecological stream construction project. As for the section for the study, the section from Gyeonggi bridge to Youngyeon bridge, the first restoration project section, was targeted. The research districts consisted of 3 districts depending on topographical structure. Investigation check cosisted of cross-sectional topographical structure, vegetation status and the structure of herbaceous plant community. As for the cross-sectional topographical structure of the stream, the width of entire stream was 26.5~28.0m and water channel is 10~20m. The area for hydrophilic space was securing spacious riverside. Upper stream of reservoir beam was shallow and slow in reservoir area above weir. Lower stream of reservoir beam, the width of water channel was narrow and ripples were formed. Among species, 9 plants were planted and 6 species plants including Salix gracilistyla, Phragmites communis and Zoysia japonica were planted at the time of construction. In the water side, there were 2 species, such as Zoysia japonica and Trifolium repens, etc, still remained after seeding at the time of constrcution. The planted plants which were observed through this investigation, were 2 species such as Festuca arundinacea and Dactylis glomerata. Apart from the planted plants, arid climate herbaceous plant such as Setaria viridis and Artemisia princeps var. orientalis formed power and the naturalized species variously emerged in 15 species. For revetment, natural stone stacking method was condicted and Salix gracilistyla, Aceriphyllum rossii, etc were planted. But all the planted plants disappeared and now it was covered with Equisetum arvense and Humulus japonicus. It was because that the base for growth and development of the plants was not constructed at the time of restoration in a way of attaching natural stones onto the concrete base. In the water channel, various wetland species including Typha orientalis, Acorus calamus var. angustatus and Phragmites communis, etc, were planted but only Salix gracilistyla, Phragmites communis and Zizania latifolia remained. As for species of the autochthons, Persicaria thunbergii was dominant. In the lower stream of reservoir beam, Humulus japonicus formed forces. In the hydrophilic space, it was necessary to direct the landscape of in-stream vegetation in cosideration of users. For this, planting Miscanthus sacchariflorus in a community was proposed. In the upper stream of reservoir beam, suplementary screen seeding was necessary so that Zizania latifolia, Typha orientalis and Phragmites communis can fit the depth of water. In the Lower stream of reservoir beam, it was necessary to constantly manage Humulus japonicus so that the wetland autochthons species, such as Phragmites communis and Persicaria thunbergii can establish power more stably.

Variations of Soil Bulk Density and Natural Revegetation on the Logging Road of Timber Harvested-Sites (벌채적지(伐採跡地) 운재로(運材路)의 토양가밀도(土壤假密度) 변화(變化)와 자연식생회복(自然植生回復)에 관한 연구(硏究))

  • Woo, Bo-Myeong;Park, Jae-Hyeon;Kim, Kyung-Hoon
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.545-555
    • /
    • 1994
  • The objective of the study was to provide the useful scientific data on the early rehabilitation of the legging road after timber harvesting in the forest area. This study was carried out at logging roads which were constructed during 1989 and 1994 in Mt. Baekwoon. The field survey was conducted in July, 1991. Judging from the analysis of soil bulk density, time required for recovery as the undisturbed forest soil condition was more than 10 years in the road which was left, and the regression equation is as follows, $$Y_1=1.4195-0.0744{\cdot}X(R^2=0.91)$$ $$Y_2=1.4673-0.0688{\cdot}X(R^2=0.73)$$ (X : elapsed year after road construction. $Y_1$, $Y_2$ : soil bulk density($g/cm^3$) at 0~7.5cm, and 7.5~15.0cm, respectively) Especially soil bulk density with buffer strip-woods was $0.890-0.903g/cm^3$, so it was 20% lower than that of logging road surface without buffer strip-woods. Among the 7 factors, location, sand content, and soil hardness had statistically significant effect on the soil bulk density in logging road surface. The pioneer species on logging road surface were Rhus cratargifolius, Prunus chinensis, and Lespedeza cyrtobotrya, etc. in woody species, and Pteridium aquilinum, Arundinella hirta, and Lysimachia clethroides, etc. in herb species. So, in process of year, average plant coverage were 70% on cutting and banking slope and 20% on logging road surface which elapsed 6 years after logging road construction. Through this research, buffer strip-woods must be remained for environmental conservation of forest conditions, and from the time to be closed the road, planting, seeding, and grazing works could be effective to the soil condition and vegetation recovery.

  • PDF