• Title/Summary/Keyword: vegetation period

Search Result 395, Processing Time 0.026 seconds

Native Plants Combination for Ecological Environmental Restoration of the Dissected Sloping Area (절개지 사면의 생태환경 복원을 위한 자생식물 조합)

  • Lee, Chang Shook;Suh, Hyoung Min;Kim, Dong Geun;Eum, Sang Mi;Choi, Sun A;Lee, Nam Sook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.6
    • /
    • pp.36-50
    • /
    • 2009
  • To suggest the native plants combination for restoration of the dissected sloping area, the plant communities of thirty seven quadrats from five localities of mid-southern part of Korean peninsula were surveyed from 2007 to 2008. Their flora, vegetation structure, and dominant species based on the importance value were investigated. And the soil characters (pH, moisture content, water holding capacity, and organic matter) of each dominant species were analyzed. Also, germination tests were performed to check the stability of restored native plants using seed chips. As a result, 79 native plants were suggested for the dissected sloping area : 20 trees and subtrees for the upper layer, 18 shrubs and vines for the middle layer, and 41 herbs for the lower layer, taken together their flora, dominant species, vegetation structure, soil condition, germination test, flowering period.

A Study on Changes of Phenology and Characteristics of Spatial Distribution Using MODIS Images (MODIS 위성영상을 이용한 식물계절의 변화와 공간적 분포 특징에 관한 연구)

  • Kim, Nam-Shin;Lee, Hee-Cheon;Cha, Jin-Yeol
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.5
    • /
    • pp.59-69
    • /
    • 2013
  • Global warming also has effects on the phenology. The limitation of phenology study is an acquisition of phenology data. Satellite images analysis can make up limitation of monitering data. This study is to analyze spatial distribution and characteristics of phenology changes using MODIS images. Research data collected images of 16 day intervals of 11 years from year 2001 to 2010. The data analyzed 228 images of 11 years. It can figure out changes of phenology by analyzing enhanced vegetation index of MODIS image. We made a comparison between changes of phenology and flowering of cherry blossoms. As a results, Startup of season spatially was getting late from southern area to north area. Startup of Phenology was foreshortened 13 days during 11 years, and change ratios of cherry blooming was getting more faster from 0.18 dat to 0.22 day per year during that same period.

Life cycle greenhouse-gas emissions from urban area with low impact development (LID)

  • Kim, Dongwook;Park, Taehyung;Hyun, Kyounghak;Lee, Woojin
    • Advances in environmental research
    • /
    • v.2 no.4
    • /
    • pp.279-290
    • /
    • 2013
  • In this study, a comprehensive model developed to estimate greenhouse gas (GHG) emissions from urban area with low impact development (LID) and its integrated management practices (IMPs). The model was applied to the actual urban area in Asan Tangjeong district (ATD) as a case study. A rainwater tank (1200 ton) among various LID IMPs generated the highest amount of GHG emissions ($3.77{\times}10^5kgCO_2eq$) and led to the utmost reducing effect ($1.49{\times}10^3kgCO_2eq/year$). In the urban area with LID IMPs, annually $1.95{\times}104kgCO_2eq$ of avoided GHG emissions were generated by a reducing effect (e.g., tap water substitution and vegetation $CO_2$ absorption) for a payback period of 162 years. A sensitivity analysis was carried out to quantitatively evaluate the significance of the factors on the overall GHG emissions in ATD, and suggested to plant alternative vegetation on LID IMPs.

A Study on the Landscape Change and Management Plan for Seomjin River Chimsil Wetland through Aerial Photograph and Sediment Analysis (항공사진 및 퇴적물 분석을 통한 섬진강 침실습지 경관변화와 관리방안)

  • Lee, Seong-Ho;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.25-39
    • /
    • 2020
  • This study analyzed the management plan of Seomjin River Chimsil Wetland by identifying landscape changes through aerial photographs analysis and concentrations of sedimentation. Geophysical Landscape Change Analysis showed that vegetation accounts for more than half of the total area. The Barren land and water body was somewhere repeatedly increased and decreased and made an irregular form in the study area. The soil was acidic, and no eurtophication was shown, but it was potential to form wetland. In addition, the research area has been terrestrification of sand bar for a long period of time, forming a soil layer. Although the characteristics of river deposits were shown in the study area, the grain size was a particulate matter, and the sorting was 'very poorly sorted'. In some areas of Seomjin River Chimsil Wetland, sand bars were formed, but most areas were undergoing to terrestrification. Therefore, in order to preserve the riverine area and to serve by a bridge between the land ecosystem and the underwater ecosystem, it is very necessary to remove some vegetation, create a proper waterway, and restore the wetland.

Vegetation Disturbance of Korea during the Pre-Chosun Dynasty Period (조선시대 이전의 식생 간섭사)

  • 공우석
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.33-48
    • /
    • 2000
  • Vegetation disturbance history of the Korean Peninsula from the Palaeolithic Age to the Koryo Dynasty (1392) has reconstructed by the use of various data sources. Active vegetation disturbance, which has begun during the Neolithic Age, seems to be more widespread on lowland and coastal areas in the early stages, but later expanded into inland areas. The ploughing of a field and the selective cutting of certain trees, such as oak trees, nettle trees and pine trees are noticeable, and eventually caused deforestation during the Bronze Age. The use of iron tools of the Iron Age has enabled the forest clearing to develope the dry fields. During the Three Kingdoms period (BC 57∼AD 918) extensive deforestation has maintained for the development of cultivated fields, as well as other activities, such as timber, lumbering, production of iron farm implement, ploughing by cattle. The encouragement of disafforestation on mountain slope and creation of terraced field during the Koryo Dynasty (918∼1392) has caused the deforestation over the country, along with the consumption of large amount of wood and timber for fire-wood, ship-building, mining, xylography and so on.

  • PDF

Seasonal Changes of the Vegetation Structure and the Primary Production in the Disturbed Banks of the Upo Wetland (우포늪의 교란된 제방에서 식생 구조의 계절적 변화와 1차생산)

  • Kang, Eun-Yeong;Kim, Tae-Geun;Oh, Kyung-Hwan
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.61-70
    • /
    • 2009
  • Seasonal changes of flora, vegetation structure, and primary production for the vascular plants were investigated in the disturbed bank, Daedaejae, one of the reinforced bank of Upo wetland, in Changnyeong-gun, Gyeongsangnam-do, Korea from October 2005 to October 2006. The flora of the whole study area, the fabricated and the non-fabricated bank area were composed of 78, 72, 75 taxa, respectively. Among all of them, hydrophytes, hygrophytes, and mesophytes were 3, 33, and 42 taxa, respectively. The naturalized plants were 20 taxa, which was 25.6% of 78 taxa distributed in the study area. Dominant species of the fabricated and the non-fabricated bank area was Equisetum arvense and Trifolium repens, respectively. Importance values of the naturalized plants such as Erigeron annuus, Humulus japonicus, Astragalus sinicus and Ambrosia artemisiifolia var. elatior were relatively high in both area. The species diversity indices(H') were 1.010~1.450, and those were relatively high in October and low in March in both area. Those of the non-fabricated bank area was higher than the fabricated bank area during the whole study period. The similarity indices(CCS) between two kinds of banks were 0.359~0.456, and was lowest in March and highest in August, the culmination period of the vascular plants. Net primary production in the fabricated bank area was $417.1\;g/m^2$, and those of Phragmites communis, Oenothera odorata, Miscanthus sacchariflorus were 179.5, 84.0, and $66.1\;g/m^2$, respectively. Net primary production in the nonfabricated bank area was $392.7\;g/m^2$, and those of Erigeron canadensis, Miscanthus sacchariflorus, and Phragmites communis were 102.5, 87.4, and $81.6\;g/m^2$, respectively.

  • PDF

Spatial Usage and Patterns of Corvus frugilegus after Sunrise and Sunset in Suwon Using Citizen Science (시민과학을 활용한 수원시에 출몰하는 떼까마귀(Corvus frugilegus)의 일출 및 일몰시 선호 서식지 분석)

  • Yun, Ji-Weon;Shin, Won-Hyeop;Kim, Ji-Hwan;Yi, Sok-Young;Kim, Do-Hee;Kim, Yu-Vin;Ryu, Young-Ryel;Song, Young-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.35-48
    • /
    • 2021
  • In Suwon, the overall hygiene of the city is threatened by the emergence of the rook(Corvus fugilegus) in the city. Rooks began to appear in November of 2016 and has continued to appear from November to March every year. In order to eradicate or to prepare an alternative habitat for rooks, this study aimed to identify the preferred habitat and specific environmental variables. Therefore, in this work, we aim to understand the predicted distribution of rooks in Suwon City with citizen science and through MaxENT, the most widely utilized habitat modeling using citizen science to analyze the preferred habitat of harmful tides appearing in urban areas. In this study, seven environmental variables were chosen: biotope group complex, building floor, vegetation, euclidean distance from farmland, euclidean distance from streetlamp, and euclidean distance from pole and DEM. Among the estimated models, after the time period of sunrise (08:00~18:00) the contribution percentage were as following: euclidean distance from arable land(39.2%), DEM(25.5%), euclidean distance from streetlamp(22.3%), euclidean distance from pole(7.1%), biotope group complex(4.9%), building floor(1%), vegetation(0%). In the time period after sunset(18:00~08:00) the contribution percentage were as following: biotope group complex(437.4%), euclidean distance from pole(26.8%), DEM(13.4%), euclidean distance from streetlamp(11.8%), euclidean distance from farmland(7.9%), building floor(1.4%), vegetation(1.3%).

Effects of Heavy Metals Pollution in Soil and Plant in the Industrial Area, West ALGERIA

  • Tahar, Kebir;Keltoum, Bouhadjera
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.1018-1023
    • /
    • 2011
  • Alzinc is a ursine situated in the Ghazaouet town western part of the republic of Algeria. The purpose of this study was to determine the degree of contamination which soil and plants are burdened with some heavy metals: Pb, Zn, Ni, Cu, Cd, Mn, Cr, Fe and As, then the accumulation of heavy metals in the soil and plant adjacent of area the alzinc ursine was detected and the interdependence of pollution among all three regions of the environment determined. This paper analyzes the heavy metal contents within a 2-years period in the soil and plants at the beginning of the vegetation period. The presence of Pb, Zn, Ni, Cu, Cd, Mn, Cr, Fe and As, in the samples were analyzed using Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). Measurements of heavy metal contents were performed at three locations in soil and vegetative parts of three-plant types (plant alimentary) period during summer. The plant samples from the immediate environment of the dumpsite were highly contaminated with Zn, Cd and Mn. Three plants species: grape, artichoke and pepper, particularly, grape met some of the conditions to be classified as accumulators for Zn, Cu, Cd and Fe, consequently, she revealed a health risk for human and livestock due to the spread of the metal pollution from waste dumpsites to agricultural areas.

Optimal Time Period for Using NDVI and LAI to Estimate Rice Yield

  • Yang, Chwen-Ming;Chen, Rong-Kuen
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.10-12
    • /
    • 2003
  • This study was to monitor changes of leaf area index (LAI) and normalized difference vegetation index (NDVI), calculated from ground-based remotely sensed high resolution reflectance spectra, during rice (Oryza sativa L. cv. TNG 67) growth so as to determine their relationships and the optimum time period to use these parameters for yield prediction. Field experiments were conducted at the experimental farm of TARI to obtain various scales of grain yield and values of LAI and NDVI in the first and the second cropping seasons of 2001-2002. It was found that LAI and NDVI can be mutually estimated through an exponential relationship, and hence plant growth information and spectral remote sensing data become complementary counterparts through this linkage. Correlation between yield and LAI was best fitted to a nonlinear function since about 7 weeks after transplanting (WAT). The accumulated and the mean values of LAI from 15 days before heading (DBH) to 15 days after heading (DAH) were the optimum time period to predict rice yield for First Crops, while values calculated from 15 DBH to 10 DAH were the optimal timing for Second Crops.

  • PDF

Dataset of Long-term Investigation on Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (II))

  • Lee, Chanjoo;Kim, Dong Gu;Hwang, Seung-Yong;Kim, Yongjeon;Jeong, Sangjun;Kim, Sinae;Cho, Hyeongjin
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.34-48
    • /
    • 2019
  • Naeseong Stream is a natural sand-bed river that flows through mountainous and cultivated area in northern part of Gyeongbuk province. It had maintained its inherent landscape characterized by white sandbars before 2010s. However, since then changes occurred, which include construction of Yeongju Dam and the extensive vegetation development around 2015. In this study, long-term monitoring was carried out on Naeseong Stream to analyze these changes objectively. This paper aims to provide a dataset of the investigation on channel morphology and vegetation for the period 2012-2018. Methods of investigation include drone/terrestrial photography, LiDAR aerial survey and on-site fieldwork. The main findings are as follows. Vegetation development in the channel of Naeseong Stream began around 1987. Before 2013 it occurred along the downstream reach and since then in the entire reach. Some of the sites where riverbed is covered with vegetation during 2014~2015 were rejuvenated to bare bars due to the floods afterwards, but woody vegetation was established in many sites. Bed changes occurred due to deposition of sediment on the vegetated surfaces. Though Naeseong Stream has maintained its substantial sand-bed characteristics, there has been a slight tendency in bed material coarsening. Riverbed degradation at the thalweg was observed in the surveyed cross sections. Considering all the results together with the hydrological characteristics mentioned in the precedent paper (I), it is thought that the change in vegetation and landscape along Naeseong Stream was mainly due to decrease of flow. The effect of Yeongju Dam on the change of the riverbed degradation was briefly discussed as well.