• 제목/요약/키워드: vegetation monitoring

검색결과 555건 처리시간 0.022초

A Statistic Correlation Analysis Algorithm Between Land Surface Temperature and Vegetation Index

  • Kim, Hyung-Moo;Kim, Beob-Kyun;You, Kang-Soo
    • Journal of Information Processing Systems
    • /
    • 제1권1호
    • /
    • pp.102-106
    • /
    • 2005
  • As long as the effective contributions of satellite images in the continuous monitoring of the wide area and long range of time period, Landsat TM and Landsat ETM+ satellite images are surveyed. After quantization and classification of the deviations between TM and ETM+ images based on approved thresholds such as gains and biases or offsets, a correlation analysis method for the compared calibration is suggested in this paper. Four time points of raster data for 15 years of the highest group of land surface temperature and the lowest group of vegetation of the Kunsan city Chollabuk_do Korea located beneath the Yellow sea coast, are observed and analyzed their correlations for the change detection of urban land cover. This experiment based on proposed algorithm detected strong and proportional correlation relationship between the highest group of land surface temperature and the lowest group of vegetation index which exceeded R=(+)0.9478, so the proposed Correlation Analysis Model between the highest group of land surface temperature and the lowest group of vegetation index will be able to give proof an effective suitability to the land cover change detection and monitoring.

비소성 무기결합재를 사용한 무시멘트 다공성 식생콘크리트의 물리·역학적 특성 및 동결융해저항성 평가 (Physical, Mechanical Properties and Freezing and Thawing Resistance of Non-Cement Porous Vegetation Concrete Using Non-Sintering Inorganic Binder)

  • 김황희;김춘수;전지홍;박찬기
    • 한국농공학회논문집
    • /
    • 제56권5호
    • /
    • pp.37-44
    • /
    • 2014
  • The physical, mechanical and freezing and thawing properties of non cement porous vegetation concrete using non-sintering inorganic binder have been evaluated in this study. Four types of porous vegetation concrete according to the binder type is evaluated. The pH value, void ratio, compressive strength, repeated freezing and thawing properties were tested. The test results indicate that the physical, mechanical and repeated freezing and thawing properties of porous vegetation concrete using the non-sintering inorganic binder is increased or equivalent compared to the porous vegetation concrete using the blast furnace slag + cement and hwang-toh + cement binders. Also, Vegetation monitoring test results indicate the porous vegetation concrete using the non-sintering inorganic binder have increasing effects of vegetation growth.

생태복원 습지의 조성 후 식생구조 변화 (Change in the Wetland Vegetation Structure after the Ecological Restoration)

  • 김나영;송영근;이근호
    • 한국환경복원기술학회지
    • /
    • 제21권6호
    • /
    • pp.95-113
    • /
    • 2018
  • We studied the change of wetland vegetation structure to understand ecological restoration process of wetlands through the field survey of ecological restoration projects in Incheon, Iksan and Busan. We compared the vegetation plan at the time of planted with the results of the vegetation monitoring in 2018, and analyzed the changes in wetland vegetation structure. Based on results, we attempted to understand the restoration process of those wetlands and discuss the management measures for sustainable wetland restoration. As a result, in the Incheon Yeonhee restoration wetland, the number of plant species was increased, from 18 species in 2016 to 29 in 2018. The dominant species, Myriophyllum verticillatum, covered the wetland most and its occupied area was increased. On the other hand, the distribution area of the planted emergent hydrophytes was reduced. The area of open water decreased from 71.7% in 2016 to 48.8% in 2018. In Busan Igidae restoration wetland, the number of plant species was increased, from 6 species in 2014 to 31 in 2018. The dominant species was Myriophyllum verticillatum and its occupied area was increased. The area of floating plant communities that planned has decreased. The open water area decreased from 83.9% in 2014 to 31.8% in 2018. In Iksan Sorasan restoration wetland, the number of plant species was increased, from 13 species in 2016 to 36 in 2018. The dominant species was Phragmites communis Trin. and its occupied area was increased. The other planted species showed a tendency to be decreased by Phragmites communis Trin. and its terrestrialization. The open water area decreased from 86.6% in 2016 to 6.7% in 2018. These results suggest that wetlands should be managed by considering the change of vegetation structure and open water areas based on the following succession process, because it affects the habitat suitability of wetland organisms and biodiversity as well. Thus, the continuous monitoring for the ecological structure of restored wetland is important, and it could be possible step to develop sustainable wetland ecological restoration model.

식생지수와 가뭄지수의 상관성 분석 (Correlation Analysis of Vegetation Index and Drought Index)

  • 김경탁;박정술
    • 한국습지학회지
    • /
    • 제8권1호
    • /
    • pp.49-58
    • /
    • 2006
  • 가뭄은 인간이 극복하기 힘든 자연재해로 시간규모가 다양하고 누적된 효과가 천천히 나타나기 때문에 인지가 어려우며 이로 인해 피해가 커지는 경향이 있다(최영진, 1995). 가뭄에 적절히 대처하기 위해서는 가뭄의 감시(Monitoring) 체계가 필요하고, 객관적이고 널리 적용될 수 있는 가뭄의 정의와 가뭄의 정도를 정량적으로 나타낼 수 있는 지표가 필요하다. 기상학 및 수자원에서는 가뭄 감시를 위해 현 상태에 대한 정량적인 가뭄심도를 나타내는 가뭄지수를 사용하고 있으며 원격탐사 분야에서는 다중시기의 식생지수 및 지표면 열지수 등을 활용하여 가뭄여부를 판단하는 노력을 수행하고 있다. 본 연구에서는 과거 10년간 남한의 가뭄시점에 대한 가뭄지수 분석을 통하여 가뭄의 심도를 파악하였고, 정규식생지수(NDVI)와 식생상태지수(VCI)를 활용하여 가뭄현황을 판별하였다. 또한, 식생지수와 가뭄지수의 상관성분석을 통하여 식생지수를 이용한 정량적인 가뭄분석의 가능성을 모색하였다.

  • PDF

Assessing Stream Vegetation Dynamics and Revetment Impact Using Time-Series RGB UAV Images and ResNeXt101 CNNs

  • Seung-Hwan Go;Kyeong-Soo Jeong;Jong-Hwa Park
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.9-18
    • /
    • 2024
  • Small streams, despite their rich ecosystems, face challenges in vegetation assessment due to the limitations of traditional, time-consuming methods. This study presents a groundbreaking approach, combining unmanned aerial vehicles(UAVs), convolutional neural networks(CNNs), and the vegetation differential vegetation index (VDVI), to revolutionize both assessment and management of stream vegetation. Focusing on Idong Stream in South Korea (2.7 km long, 2.34 km2 basin area)with eight diverse revetment methods, we leveraged high-resolution RGB images captured by UAVs across five dates (July-December). These images trained a ResNeXt101 CNN model, achieving an impressive 89% accuracy in classifying vegetation cover(soil,water, and vegetation). This enabled detailed spatial and temporal analysis of vegetation distribution. Further, VDVI calculations on classified vegetation areas allowed assessment of vegetation vitality. Our key findings showcase the power of this approach:(a) TheCNN model generated highly accurate cover maps, facilitating precise monitoring of vegetation changes overtime and space. (b) August displayed the highest average VDVI(0.24), indicating peak vegetation growth crucial for stabilizing streambanks and resisting flow. (c) Different revetment methods impacted vegetation vitality. Fieldstone sections exhibited initial high vitality followed by decline due to leaf browning. Block-type sections and the control group showed a gradual decline after peak growth. Interestingly, the "H environment block" exhibited minimal change, suggesting potential benefits for specific ecological functions.(d) Despite initial differences, all sections converged in vegetation distribution trends after 15 years due to the influence of surrounding vegetation. This study demonstrates the immense potential of UAV-based remote sensing and CNNs for revolutionizing small-stream vegetation assessment and management. By providing high-resolution, temporally detailed data, this approach offers distinct advantages over traditional methods, ultimately benefiting both the environment and surrounding communities through informed decision-making for improved stream health and ecological conservation.

색상지수 기반의 식물분할을 위한 다층퍼셉트론 신경망 (A Multi-Layer Perceptron for Color Index based Vegetation Segmentation)

  • 이문규
    • 산업경영시스템학회지
    • /
    • 제43권1호
    • /
    • pp.16-25
    • /
    • 2020
  • Vegetation segmentation in a field color image is a process of distinguishing vegetation objects of interests like crops and weeds from a background of soil and/or other residues. The performance of the process is crucial in automatic precision agriculture which includes weed control and crop status monitoring. To facilitate the segmentation, color indices have predominantly been used to transform the color image into its gray-scale image. A thresholding technique like the Otsu method is then applied to distinguish vegetation parts from the background. An obvious demerit of the thresholding based segmentation will be that classification of each pixel into vegetation or background is carried out solely by using the color feature of the pixel itself without taking into account color features of its neighboring pixels. This paper presents a new pixel-based segmentation method which employs a multi-layer perceptron neural network to classify the gray-scale image into vegetation and nonvegetation pixels. The input data of the neural network for each pixel are 2-dimensional gray-level values surrounding the pixel. To generate a gray-scale image from a raw RGB color image, a well-known color index called Excess Green minus Excess Red Index was used. Experimental results using 80 field images of 4 vegetation species demonstrate the superiority of the neural network to existing threshold-based segmentation methods in terms of accuracy, precision, recall, and harmonic mean.

생태하천 복원 후 모니터링과 적응관리 - 안양시 학의천을 중심으로 - (Follow-up Monitoring & Adaptive Management after Ecological Restoration for the Stream - Focused the Hakui Stream in Anyang City -)

  • 최정권;최미경;최철빈
    • 한국환경복원기술학회지
    • /
    • 제18권6호
    • /
    • pp.85-95
    • /
    • 2015
  • Recent years, nationwide projects for ecological restoration are implemented with emerging issues on the stream ecosystem. In order to enhance effectiveness of the ecosystem restoration and reduce negative impact, the appraisal of effectiveness through the follow-up monitoring and the adaptive management process are executed in consecutive phase. In this study, planning phase, monitoring and adaptive management in Hakui stream which is part of An Yang stream restoration project is introduced as representative ongoing case of effective adaptive management. The aim of this study is to verify the adaptive management process and suggest direction of effective restoration. Restoration project of Hakui stream resulted in increasing number and diversity of species (vegetation, fish, bird, invertbrates, amphibian and reptilia) according to monitoring from 2004 to 2013, and enhancing natural river landscape by evaluation of river naturalness among 2001(before restoration), 2007 (after), 2015 (recent). However, excessive vegetation expansion or sediment deposition on channel over time caused unexpected results such as terrestrialization or degradation of habitats. Adaptive management action such as removing disturbance species (Humulus japonicus)(2007), coppicing willow (2007), release of march snail (2007), creation of wetland (2014) were implemented based on monitoring results. And then appraisal of management action was discussed.

Application of High-Resolution Satellite Image to Vegetation Environment Evaluation in the Urban Area

  • Shibata, Satoshi;Tachiiri, Kaoru;Gotoh, Keinosuke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.502-504
    • /
    • 2003
  • The main objective of this study is to examine the effectiveness of newly available high spatial resolution satellite images, in evaluating vegetation environment of the urban areas. In doing so, we have used satellite images from QuickBird and selected some areas of Fukuoka City, Kyushu Japan, as study area. The results of the study revealed that, high resolution images are more effective in close monitoring of the vegetation status and green plants should be planted in open spaces and roofs of urban areas to increase vegetation, which will in turn act as a remedy to reduce heat island phenomenon.

  • PDF

위성자료를 이용한 중국과 몽골 사막주변의 식생수분상태 모니터링 (Vegetation Water Status Monitoring around China and Mongolia Desert using Satellite Data)

  • 이가람;김영섭;한경수;이창석;염종민
    • 한국지리정보학회지
    • /
    • 제11권4호
    • /
    • pp.94-100
    • /
    • 2008
  • 기후 시스템에서 지구온난화는 세계적으로 매우 중요한 문제이고 이는 기후변화, 이상기온, 폭우, 가뭄 등의 문제를 초래한다. 특히 가뭄은 기후변화에 의해 여러 해 동안 진행되어온 사막화를 가속화시킨다. 본 연구의 목적은 중국과 몽골 사막주변의 식생수분상태를 탐지하는 것이다. 본 연구에서는 중국과 몽골 사막 주변의 식생수분지수를 산출하기 위해 1999년부터 2006년까지의 SPOT/VEGETATION 위성 이미지를 이용하여 정규수분지수(NDWI: Normalized Difference Water Index)를 산출하였다. 건조한 상태의 식생은 사막화되기 쉽기 때문에 식생 수분은 사막화의 중요한 지표이다. SPOT/VEGETATION 위성영상의 근적외밴드(NIR)와 단파적외밴드(SWIR)의 밴드간 연산을 통하여 NDWI를 구하여 식생의 수분입자를 측정하였다. 그 결과 1999년부터 2006년까지의 NDWI는 사막주변영역에서 감소하는 경향을 보였고, 그 영역은 몽골 고비사막 북동지역과 중국 타클라마칸 사막의 남동지역에 위치해 있었다.

  • PDF

태안해안국립공원 식생 현황과 공간분포 특성 (Vegetation Status and Characteristics of the Spatial Distribution in Taeanhaean National Park)

  • 이선미;명현호
    • 생태와환경
    • /
    • 제48권2호
    • /
    • pp.122-128
    • /
    • 2015
  • 본 연구는 태안해안국립공원에 분포하는 식생 현황 및 공간분포 특성을 분석한 후 그 결과를 바탕으로 식생 관리 방안을 제시하기 위해 실시하였다. 분석 결과, 태안해안국립공원에서 확인된 식물군락은 산지 상록활엽수림인 동백 나무군락, 산지 낙엽활엽수림인 소사나무군락, 소사나무 - 곰솔군락, 음나무군락 및 모감주나무군락, 산지침엽수림인 곰솔군락, 곰솔 - 소나무군락 및 소나무군락, 저층습원식생인 갈대군락, 해안사구식생인 순비기나무군락, 갯그령군락, 갯쇠보리군락, 통보리사초군락 및 갯잔디군락, 염습지식생인 해홍나물군락, 식재림인 아까시나무군락이었다. 현존식생도에 나타난 경관유형은 곰솔군락 (3.92%), 소나무군락 (1.40%), 아까시나무군락 (0.05%), 사구식생 (0.11%), 경작지 (0.46%), 해변 (0.24%), 간벌지역 (0.08%), 나지 (0.16%), 바다 (93.58%) 등이었다. 식생유형에서는 곰솔군락이 $14.797km^2$ (3.92%)로 가장 넓은 면적을 차지하였다. 인간 간섭과 이용의 정도에 따라 해안과 내륙에 분포하는 곰솔 군락은 층위구조와 종 조성이 다르게 나타났으며, 교란 빈도가 낮은 지역에서는 떡갈나무 및 졸참나무가 잠재적 식생을 형성하여 천이가 진행되고 있는 것으로 판단된다. 해안에 분포하는 곰솔군락 하층에는 붉은서나물이, 기지포와 삼봉사구에는 갯그령군락과 통보리사초군락이 우점하고 있으며, 그곳을 중심으로 백령풀이 침입하여 넓게 분포하고 있다. 외래식물인 붉은서나물과 백령풀은 확산속도가 빠르게 나타나고 있어 해안식생에 부정적인 영향을 미칠 것으로 판단되며, 이에 대한 모니터링 및 관리방안이 요구된다.