• Title/Summary/Keyword: vegetation indices

Search Result 298, Processing Time 0.024 seconds

Studies on major plant communities distribution factors of the Gayasan national park using GIS (GIS 기반 가야산국립공원의 주요 식물군락 분포요인 분석)

  • Kim, Bo-Mook;Yang, Keum-Chul
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.164-171
    • /
    • 2017
  • This study analysed 7 distribution features of dominant natural vegetation, such as elevation, slope, aspect, topographic index, annual mean temperature, warmth index and potential evapotranspiration using geographic information system(GIS) in Gayasan national park. The Gayasan national park has total 128 communities in which Pinus densiflora community occupies with 29.42%, Quercus mongolica community 27.66% relatively. These two communities comprise 80.58% out of total area, considering Q. mongolica & P. densiflora dominantly mixed communities. The Q. mongolica communities range around 575~1,065m(80.4%) in elevation, and the P. densiflora communities range around 465~965m(84.1%), respectively. The slopes of those two communities areas showed over $21^{\circ}$(78.0%) and (71.3%) respectively. In terms of slope aspect occurrence, Q. mongolica communities occur mostly on northern slope, and the P. densiflora communities on southern slope. The topographic indices of both communities occur around 5~6 most frequently. The Annual mean temperature distributions of Q. mongolica and P. densiflora range $7{\sim}8^{\circ}C$(83%), $8{\sim}9^{\circ}C$(84%), respectively, And the warmth index range of Q. mongolica is $59{\sim}70^{\circ}C{\cdot}month$ and the P. densiflora community, $58{\sim}88^{\circ}C{\cdot}month$. The potential evapotranspiration ranges mostly from 560 to 590mm/yr, in Q. mongolica communities, and from 580 to 610mm/yr in P. densiflora communities.

Ecological Indicators of Forest Degradation after Forest Fire and Clear-cutting in the Siberian Larch (Larix sibirica) Stand of Mongolia

  • Park, Yeong Dae;Lee, Don Koo;Stanturf, John A.;Woo, Su Young;Zoyo, Damdinjav
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.609-617
    • /
    • 2009
  • This study was conducted to investigate ecological indicators of forest degradation after forest fire and clear-cutting in the Siberian larch (Larix sibirica Ledeb.) stand of Mongolia. The species abundance and biodiversity indices were higher in burned and clear-cut stands than those of reference stand, but boreal understory species, such as Vaccinium vitis-idaea, Pyrola incarnata, Linnea borealis and Maianthemum bifolium, completely disappeared and was replaced by sedge species, such as Carex duriuscula, C. lanceolata, C. pediformis, Poa attenuata and P. pratensis. During the research period, temperature increased by an average of $1.6^{\circ}C$ in burned stand and $1.7^{\circ}C$ in clear-cut stand compared to reference stand, but RH sharply decreased up to 15.7% in clear-cut stand. This result indicates that Larix sibirica stand became warmer and drier after forest fire and clear-cutting, and contributed to the abundance of sedge and grass species in the understory. Moreover, intense occupation of tall sedge grass after forest fire and clear-cutting had a vital role as obstacle on natural regeneration of Larix sibirica. The similarity of species composition between reference and burned stands was higher (73.6%) than between reference and clear-cut stands (63.8%). Soil moisture significantly decreased after forest fire and clear-cutting, and the extent of decrease was more severe in the clear-cut stand. The chemical properties at soil organic layer were significantly affected by forest fire and clear-cutting but not the mineral horizons. Inorganic nitrogen of the forest floor significantly decreased in the clear-cut stand ($1.1{\pm}0.4mg{\cdot}kg^{-1}$) than that of the burned ($4.5{\pm}2.3mg{\cdot}kg^{-1}$) and reference stands ($5.0{\pm}2.3mg{\cdot}kg^{-1}$). Available P of the forest floor significantly increased after fire, whereas it decreased after clear-cutting. These results indicate that existence of boreal understory vegetation, and changes in soil moisture and available P are distinct attributes applicable as ecological indicators for identifying forest degradation in Mongolia.

Effects of Fire on Vegetation and Soil Nutrients in Mt. Chiak (치악산의 식생과 토양에 미친 산불의 영향)

  • 박봉규;김종희
    • Journal of Plant Biology
    • /
    • v.24 no.1
    • /
    • pp.31-45
    • /
    • 1981
  • The purpose of this study aimed to study effects of fire on vegetation and soil properties after the first growing season in Mt. Chiak. 1. With the basis of importance value of species in each stand, status of species was assessed for three categories; Increaser species, Decreaser species, and Neutral species. 2. Biomass was 2.2 times higher on burned area than unburned. This indicates that biomass was remarkably increased after fire. 3. To evaluate similarity, coefficients of similarity among communities were obtained, and correlation coefficients were also estimated. These indices showed that burned and unburned community were markedly different.. $B_1$-stand and $B_1$-stand appeared most similar to each other among stands. 4. Species diversity was greater in burned than unburned stands. 5. Soil pH value and organic matter content in burned area were significantly higher than those in unburned area. However, soil water content was lower in burned area. There was no effect of burning on soil pH value and water content at 15~20 cm depth of soil. 6. All chemical compositions except sodium were much higher in soil surface. The decreases in sodium levels at surface were probably resulted from the rapid leaching due to the increased solubility and decreased capacity for adsorption of sodium in comparison with potassium or calcium. Among chemical compositions of soil amount of nitrogen showed least difference between the burneb and unburned surfaces soil.

  • PDF

Extraction of Agricultural Land Use and Crop Growth Information using KOMPSAT-3 Resolution Satellite Image (KOMPSAT-3급 위성영상을 이용한 농업 토지이용 및 작물 생육정보 추출)

  • Lee, Mi-Seon;Kim, Seong-Joon;Shin, Hyoung-Sub;Park, Jin-Ki;Park, Jong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.411-421
    • /
    • 2009
  • This study refers to develop a semi-automatic extraction of agricultural land use and vegetation information using high resolution satellite images. Data of IKONOS-2 satellite images (May 25 of 2001, December 25 of 2001, and October 23 of 2003), QuickBird-2 satellite images (May 1 of 2006 and November 17 of 2004) and KOMPSAT-2 satellite image (September 17 of 2007) which resemble with the spatial resolution and spectral characteristics of KOMPSAT-3 were used. The precise agricultural land use classification was tried using ISODATA unsupervised classification technique, and the result was compared with on-screen digitizing land use accompanying with field investigation. For the extraction of crop growth information, three crops of paddy, com and red pepper were selected, and the spectral characteristics were collected during each growing period using ground spectroradiometer. The vegetation indices viz. RVI, NDVI, ARVI, and SAVI for the crops were evaluated. The evaluation process was developed using the ERDAS IMAGINE Spatial Modeler Tool.

Analysis of Future Land Use and Climate Change Impact on Stream Discharge (미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석)

  • Ahn, So Ra;Lee, Yong Jun;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.215-224
    • /
    • 2008
  • The effect of streamflow considering future land use change and vegetation index information by climate change scenario was assessed using SLURP (Semi-distributed Land-Use Runoff Process) model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for the upstream watershed ($260.4km^2$) of Gyeongan water level gauging station. By applying CA-Markov technique, the future land uses (2030, 2060, 2090) were predicted after test the comparison of 2004 Landsat land use and 2004 CA-Markov land use by 1996 and 2000 land use data. The future land use showed a tendency that the forest and paddy decreased while urban, grassland and bareground increased. The future vegetation indices (2030, 2060, 2090) were estimated by the equation of linear regression between monthly NDVI of NOAA AVHRR images and monthly mean temperature of 5 years (1998-2002). Using CCCma CGCM2 simulation result based on SRES A2 and B2 scenario (2030s, 2060s, 2090s) of IPCC and data were downscaled by Stochastic Spatio-Temporal Random Cascade Model (SST-RCM) technique, the model showed that the future runoff ratio was predicted from 13% to 34% while the runoff ratio of 1999-2002 was 59%. On the other hand, the impact on runoff ratio by land use change showed about 0.1% to 1% increase.

Utilization of Weather, Satellite and Drone Data to Detect Rice Blast Disease and Track its Propagation (벼 도열병 발생 탐지 및 확산 모니터링을 위한 기상자료, 위성영상, 드론영상의 공동 활용)

  • Jae-Hyun Ryu;Hoyong Ahn;Kyung-Do Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.245-257
    • /
    • 2023
  • The representative crop in the Republic of Korea, rice, is cultivated over extensive areas every year, which resulting in reduced resistance to pests and diseases. One of the major rice diseases, rice blast disease, can lead to a significant decrease in yields when it occurs on a large scale, necessitating early detection and effective control of rice blast disease. Drone-based crop monitoring techniques are valuable for detecting abnormal growth, but frequent image capture for potential rice blast disease occurrences can consume significant labor and resources. The purpose of this study is to early detect rice blast disease using remote sensing data, such as drone and satellite images, along with weather data. Satellite images was helpful in identifying rice cultivation fields. Effective detection of paddy fields was achieved by utilizing vegetation and water indices. Subsequently, air temperature, relative humidity, and number of rainy days were used to calculate the risk of rice blast disease occurrence. An increase in the risk of disease occurrence implies a higher likelihood of disease development, and drone measurements perform at this time. Spectral reflectance changes in the red and near-infrared wavelength regions were observed at the locations where rice blast disease occurred. Clusters with low vegetation index values were observed at locations where rice blast disease occurred, and the time series data for drone images allowed for tracking the spread of the disease from these points. Finally, drone images captured before harvesting was used to generate spatial information on the incidence of rice blast disease in each field.

Assessment of the Utility of Remote Sensing Techniques for Monitoring Compliance with Direct Payment Programs (직불제 이행점검 모니터링을 위한 원격탐사 기법 활용성 평가)

  • Hoyong Ahn;Jae-Hyun Ryu;Kyungdo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1467-1475
    • /
    • 2023
  • The public-interest direct payment program involves providing direct payments to agricultural producers and rural residents through public funds, premised on performing public functions such as environmental conservation, stable food supply, and maintaining rural communities via agricultural activities. Scientific estimation of crop cultivation areas and production levels is crucial for formulating agricultural policies linked to regulating food supply, which increasingly impacts the national economy. Conducting comprehensive on-site inspections for compliance monitoring of direct payment programs has shown very low efficiency in relation to budget and time. The expansion of areas subject to compliance monitoring and various challenges in on-site inspections necessitate streamlining current monitoring methods and devising effective strategies. As a solution, the application of Remote Sensing technology and spatial information utilization, allowing swift acquisition of necessary information for policies without overall on-site visits, is being discussed as an efficient compliance monitoring method. Therefore, this study evaluated the potential use of remote sensing for improving operational efficiency in monitoring compliance with public-interest direct payment programs. Using satellite images during farming seasons in Gimje and Hapcheon, vegetation indices and spatial variations were utilized to identify cultivated areas, presence of mixed crops, validated against on-site inspection data.

Monitoring of Crop Water Stress with Temperature Conditions Using MTCI and CCI (가뭄과 폭염 조건에서 MTCI와 CCI를 이용한 수분 스트레스 평가)

  • Kyeong-Min Kim;Hyun-Dong Moon;Euni Jo;Bo-Kyeong Kim;Subin Choi;Yuhyeon Lee;Yuna Lee;Hoejeong Jeong;Jae-Hyun Ryu;Hoyong Ahn;Seongtae Lee;Jaeil Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1225-1234
    • /
    • 2023
  • The intensity of crop water stress caused by moisture deficit is affected by growth and heat conditions. For more accurate detection of crop water stress state using remote sensing techniques, it is necessary to select vegetation indices sensitive to crop response and to understand their changes considering not only soil moisture deficit but also heat conditions. In this study, we measured the MERIS terrestrial chlorophyll index (MTCI) and chlorophyll/carotenoid index (CCI) under drought and heat wave conditions. The MTCI, sensitive to chlorophyll concentration, sensitively decreased on non-irrigation conditions and the degree was larger with heat waves. On the other hand, the CCI, correlated with photosynthesis efficiency, showed less sensitivity to water deficit but had decreased significantly with heat waves. After re-irrigation, the MTCI was increased than before damage and CCI became more sensitive to heat stress. These results are expected to contribute to evaluating the intensity of crop water stress through remote sensing techniques.

A Study on the Land Surface Emissivity (LSE) Distribution of Mid-wavelength Infrared (MWIR) over the Korean Peninsula (한반도 중파장적외선 지표 복사율 분포 연구)

  • Sun, Jongsun;Park, Wook;Won, Joong-sun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.423-434
    • /
    • 2016
  • Surface emissivity and its background values according to each sensor are mandatorily necessary for Mid-Wavelength Infrared (MWIR) remote sensing to retrieve surface temperature and temporal variation. This study presents the methods and results of Land Surface Emissivity (LSE) of the MWIR according to land cover over the Korean Peninsula. The MWIR emissivity was estimated by applying the Temperature Independent Spectral Indices (TISI) method to the Visible Infrared Imaging Radiometer Suite (VIIRS) band 4 Day/Night images ($3.74{\mu}m$ in center wavelength). The obtained values were classified according to land-cover types, and the obtained emissivity was then compared with those calculated from a standard Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) spectral library. The annual means of MWIR emissivity of Deciduous Broadleaf Forest (0.958) and Mixed Forest (0.935) are higher than those of Croplands (0.925) and Natural Vegetation Mosaics (0.935) by about 2-3%. The annual mean of Urban area is the lowest (0.914) with an annual variation of about 2% which is by larger than those (1%) of other land-covers. The TISI and VIIRS based emissivity is slightly lower than the ASTER spectral library by about 2-3% supposedly due to various reasons such as lack of land cover homogeneity. The results will be used to understand the MWIR emissivity properties of the Korean Peninsula and to examine the seasonal and other environmental changes using MWIR images.

Evaluation of Photochemical Reflectance Index (PRI) Response to Soybean Drought stress under Climate Change Conditions (기후변화 조건에서 콩 한발스트레스에 대한 광화학 반사 지수 반응 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyeong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.261-268
    • /
    • 2019
  • Climate change and drought stress are having profound impacts on crop growth and development by altering crop physiological processes including photosynthetic activity. But finding a rapid, efficient, and non-destructive method for estimating environmental stress responses in the leaf and canopy is still a difficult issue for remote sensing research. We compared the relationships between photochemical reflectance index(PRI) and various optical and experimental indices on soybean drought stress under climate change conditions. Canopy photosynthesis trait, biomass change, chlorophyll fluorescence(Fv/Fm), stomatal conductance showed significant correlations with midday PRI value across the drought stress period under various climate conditions. In high temperature treatment, PRI were more sensitive to enhanced drought stress, demonstrating the negative effect of the high temperature on the drought stress. But high CO2 concentration alleviated the midday depression of both photosynthesis and PRI. Although air temperature and CO2 concentration could affect PRI interpretation and assessment of canopy radiation use efficiency(RUE), PRI was significantly correlated with canopy RUE both under climate change and drought stress conditions, indicating the applicability of PRI for tracking the drought stress responses in soybean. However, it is necessary to develop an integrated model for stress diagnosis using PRI at canopy level by minimizing the influence of physical and physiological factors on PRI and incorporating the effects of other vegetation indices.